1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Continuity-Weierstrass Function

المؤلف:  Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H

المصدر:  Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

الجزء والصفحة:  ...

10-5-2018

1920

Continuity-Weierstrass Function

 

WeierstrassFunction

The pathological function

 f_a(x)=sum_(k=1)^infty(sin(pik^ax))/(pik^a)

(originally defined for a=2) that is continuous but differentiable only on a set of points of measure zero. The plots above show f_a(x) for a=2 (red), 3 (green), and 4 (blue).

The function was published by Weierstrass but, according to lectures and writings by Kronecker and Weierstrass, Riemann seems to have claimed already in 1861 that the function f(x) is not differentiable on a set dense in the reals. However, Ullrich (1997) indicates that there is insufficient evidence to decide whether Riemann actually bothered to give a detailed proof for this claim. du Bois-Reymond (1875) stated without proof that every interval of f contains points at which f does not have a finite derivative, and Hardy (1916) proved that it does not have a finite derivative at any irrational and some of the rational points. Gerver (1970) and Smith (1972) subsequently proved that f has a finite derivative (namely, 1/2) at the set of points x=(2A+1)/(2B+1) where Aand B are integers. Gerver (1971) then proved that f is not differentiable at any point of the form 2A/(2B+1) or (2A+1)/(2B). Together with the result of Hardy that f is not differentiable at any irrational value, this completely solved the problem of the differentiability f.

Amazingly, the value of f(x) can be computed exactly for rational numbers x=p/q as

 f(p/q)=pi/(4q^2)sum_(k=1)^(q-1)(sin((k^2ppi)/q))/(sin^2((kpi)/(2q))).

 


REFERENCES:

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

Berry, M. V. and Lewis, Z. V. "On the Weierstrass-Mandelbrot Function." Proc. Roy. Soc. London Ser. A 370, 459-484, 1980.

Chamizo, F. and Córdoba, A. "Differentiability and Dimension of Some Fractal Fourier Series." Adv. Math. 142, 335-354, 1999.

Darboux, G. "Mémoire sur les fonctions discontinues." Ann. l'École Normale, Ser. 2 4, 57-112, 1875.

Darboux, G. "Mémoire sur les fonctions discontinues." Ann. l'École Normale, Ser. 2 8, 195-202, 1879.

du Bois-Reymond, P. "Versuch einer Klassification der willkürlichen Functionen reeller Argumente nach ihren Änderungen in den kleinsten Intervallen." J. für Math. 79, 21-37, 1875.

Duistermaat, J. J. "Self-Similarity of 'Riemann's Nondifferentiable Function.' " Nieuw Arch. Wisk. 9, 303-337, 1991.

Esrafilian, E. and Shidfar, A. "Hölder Continuity of Cellerier's Non-Differentiable Function." Punjab Univ. J. Math. (Lahore) 28, 118-121, 1995.

Faber, G. "Einfaches Beispiel einer stetigen nirgends differentiierbaren [sic] Funktion." Jahresber. Deutschen Math. Verein. 16, 538-540, 1907.

Falconer, K. Fractal Geometry: Mathematical Foundations and Applications. New York: Wiley, 1990.

Gerver, J. "The Differentiability of the Riemann Function at Certain Rational Multiples of pi." Amer. J. Math. 92, 33-55, 1970.

Gerver, J. "More on the Differentiability of the Riemann Function." Amer. J. Math. 93, 33-41, 1971.

Girgensohn, R. "Functional Equations and Nowhere Differentiable Functions." Aeq. Math. 46, 243-256, 1993.

Gluzman, S. and Sornette, D. "Log-Periodic Route to Fractal Functions." 4 Oct 2001. http://arxiv.org/abs/cond-mat/0106316.

Hairer, E. and Wanner, G. Analysis by Its History. New York: Springer-Verlag, 1996.

Hardy, G. H. "Weierstrass's Non-Differentiable Function." Trans. Amer. Math. Soc. 17, 301-325, 1916.

Havil, J. "Weierstrass Function." §D.2, Appendix D, in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 230-231, 2003.

Hu, T. Y. and Lau, K.-S. "Fractal Dimensions and Singularities of the Weierstrass Type Functions." Trans. Amer. Math. Soc. 335, 649-665, 1993.

Hunt, B. R. "The Hausdorff Dimension of Graphs of Weierstrass Functions." Proc. Amer. Math. Soc. 126, 791-800, 1998.

Jaffard, S. "The Spectrum of Singularities of Riemann's Function." Rev. Mat. Iberoamericana 12, 441-460, 1996.

Kairies, H.-H. "Functional Equations for Peculiar Functions." Aeq. Math. 53, 207-241, 1997.

Kawamoto, S. and Tsubata, T. "The Weierstrass Function of Chaos Map with Exact Solution." J. Phys. Soc. Japan 66, 2209-2210, 1997.

Kritikos, H. N. and Jaggard, D. L. (Eds.). Recent Advances in Electromagnetic Theory. New York: Springer-Verlag, 1992.

Landsberg, G. "Über Differentziierbarkeit stetiger Funktionen." Jahresber. Deutschen Math. Verein. 17, 46-51, 1908.

Lerch, M. "Ueber die Nichtdifferentiirbarkeit [sic] gewisser Functionen." J. reine angew. Math. 13, 126-138, 1888.

Mandelbrot, B. B. "Weierstrass Functions and Kin. Ultraviolet and Infrared Catastrophe." The Fractal Geometry of Nature. New York: W. H. Freeman, pp. 388-390, 1983.

Metzler, W. "Note on a Chaotic Map That Generates Nowhere-Differentiability." Math. Semesterber. 40, 87-90, 1993.

Pickover, C. A. Keys to Infinity. New York: Wiley, p. 190, 1995.

Salzer, H. E. and Levine, N. "Table of a Weierstrass Continuous Non-Differentiable Function." Math. Comput. 15, 120-130, 1961.

Singh, A. N. The Theory and Construction of Non-Differentiable Functions. Lucknow: Newul Kishore Press, 1935.

Smith, A. "The Differentiability of Riemann's Functions." Proc. Amer. Math. Soc. 34, 463-468, 1972.

Sun, D. C. and Wen, Z. Y. "Dimension de Hausdorff des graphes de séries trigonométriques lacunaires." C. R. Acad. Sci. Paris Sér. I Math. 310, 135-140, 1990.

Sun, D. and Wen, Z. "The Hausdorff Dimension of Graph of a Class of Weierstrass Functions." Progr. Natur. Sci. (English Ed.) 6, 547-553, 1996.

Sun, D. C. and Wen, Z. Y. "The Hausdorff Dimension of a Class of Lacunary Trigonometric Series." In Harmonic Analysis: Proceedings of the Special Program held in Tianjin, March 1-June 30, 1988 (Ed. M.-T. Cheng, X. W. Zhou, and D. G. Deng). Berlin: Springer-Verlag, pp. 176-181, 1991.

Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 36, 2004. http://www.mathematicaguidebooks.org/.

Ullrich, P. "Anmerkungen zum 'Riemannschen Beispiel' sum_(n=1)^(infty)(sinn^2x)/n^2 einer stetigen, nicht differenzierbaren Funktion." Results Math. 31, 245-265, 1997.

Volkert, K. "Die Geschichte der pathologischen Funktionen--Ein Beitrag zur Entstehung der mathematischen Methodologie." Arch. Hist. Exact Sci. 37, 193-232, 1987.

Weierstrass, K. Abhandlungen aus der Functionenlehre. Berlin: J. Springer, p. 97, 1886.

EN

تصفح الموقع بالشكل العمودي