تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Lyapunov Function
المؤلف: Boyce, W. E. and DiPrima, R. C
المصدر: Elementary Differential Equations and Boundary Value Problems, 5th ed. New York: Wiley
الجزء والصفحة: ...
22-6-2018
1553
A Lyapunov function is a scalar function defined on a region that is continuous, positive definite, for all ), and has continuous first-order partial derivatives at every point of . The derivative of with respect to the system , written as is defined as the dot product
(1) |
The existence of a Lyapunov function for which on some region containing the origin, guarantees the stability of the zero solution of , while the existence of a Lyapunov function for which is negative definite on some region containing the origin guarantees the asymptotical stability of the zero solution of .
For example, given the system
(2) |
|||
(3) |
and the Lyapunov function , we obtain
(4) |
which is nonincreasing on every region containing the origin, and thus the zero solution is stable.
REFERENCES:
Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations and Boundary Value Problems, 5th ed. New York: Wiley, pp. 502-512, 1992.
Brauer, F. and Nohel, J. A. The Qualitative Theory of Ordinary Differential Equations: An Introduction. New York: Dover, 1989.
Hahn, W. Theory and Application of Liapunov's Direct Method. Englewood Cliffs, NJ: Prentice-Hall, 1963.
Jordan, D. W. and Smith, P. Nonlinear Ordinary Differential Equations. Oxford, England: Clarendon Press, p. 283, 1977.
Kalman, R. E. and Bertram, J. E. "Control System Analysis and Design Via the 'Second Method' of Liapunov, I. Continuous-Time Systems." J. Basic Energ. Trans. ASME 82, 371-393, 1960.
Oguztöreli, M. N.; Lakshmikantham, V.; and Leela, S. "An Algorithm for the Construction of Liapunov Functions." Nonlinear Anal.5, 1195-1212, 1981.
Zwillinger, D. "Liapunov Functions." §120 in Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, pp. 429-432, 1997.