تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Complete Elliptic Integral of the Second Kind
المؤلف: Gradshteyn, I. S. and Ryzhik, I. M
المصدر: Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
الجزء والصفحة: ...
18-8-2018
1947
The complete elliptic integral of the second kind, illustrated above as a function of , is defined by
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
where is an incomplete elliptic integral of the second kind, is the hypergeometric function, and is a Jacobi elliptic function.
It is implemented in the Wolfram Language as EllipticE[m], where is the parameter.
can be computed in closed form in terms of and the elliptic alpha function for special values of , where is a called an elliptic integral singular value. Other special values include
(5) |
|||
(6) |
The complete elliptic integral of the second kind satisfies the Legendre relation
(7) |
where and are complete elliptic integrals of the first and second kinds, respectively, and and are the complementary integrals. The derivative is
(8) |
(Whittaker and Watson 1990, p. 521).
The solution to the differential equation
(9) |
(Zwillinger 1997, p. 122; Gradshteyn and Ryzhik 2000, p. 907) is given by
(10) |
If is a singular value (i.e.,
(11) |
where is the elliptic lambda function), and and the elliptic alpha function are also known, then
(12) |
REFERENCES:
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 122, 1997.