تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Lagrange Multiplier
المؤلف: Arfken, G
المصدر: "Lagrange Multipliers." §17.6 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
الجزء والصفحة: ...
21-9-2018
2272
Lagrange multipliers, also called Lagrangian multipliers (e.g., Arfken 1985, p. 945), can be used to find the extrema of a multivariate function subject to the constraint , where and are functions with continuous first partial derivatives on the open set containing the curve , and at any point on the curve (where is the gradient).
For an extremum of to exist on , the gradient of must line up with the gradient of . In the illustration above, is shown in red, in blue, and the intersection of and is indicated in light blue. The gradient is a horizontal vector (i.e., it has no -component) that shows the direction that the function increases; for it is perpendicular to the curve, which is a straight line in this case. If the two gradients are in the same direction, then one is a multiple () of the other, so
(1) |
The two vectors are equal, so all of their components are as well, giving
(2) |
for all , ..., , where the constant is called the Lagrange multiplier.
The extremum is then found by solving the equations in unknowns, which is done without inverting , which is why Lagrange multipliers can be so useful.
For multiple constraints , , ...,
(3) |
REFERENCES:
Arfken, G. "Lagrange Multipliers." §17.6 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 945-950, 1985.
Lang, S. Calculus of Several Variables. Reading, MA: Addison-Wesley, p. 140, 1973.
Simmons, G. F. Differential Equations. New York: McGraw-Hill, p. 367, 1972.
Zwillinger, D. (Ed.). "Lagrange Multipliers." §5.1.8.1 in CRC Standard Mathematical Tables and Formulae, 31st Ed. Boca Raton, FL: CRC Press, pp. 389-390, 2003.