1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Three Circles Theorem

المؤلف:  Bohr, H. and Landau, E

المصدر:  Beiträge zur Theorie der Riemannschen Zetafunktion." Math. Ann. 74, 3-30, 1913. Reprinted in Bohr, H. §B11 in Collected Works, Vol. 1.

الجزء والصفحة:  ...

24-9-2018

2550

Three Circles Theorem

The three circles theorem, also called Hadamard's three circles theorem (Edwards 2001, p. 187), states that if f is an analytic function in the annulus 0<r_1<|z|<r_2<inftyr_1<r<r_2, and M_1M_2, and M are the maxima of f on the three circles corresponding to r_1r_2, and r, respectively, then

 M^(ln(r_2/r_1))<=M_1^(ln(r_2/r))M_2^(ln(r/r_1))

(Derbyshire 2004, p. 376).

The theorem was first published by Hadamard in 1896, although without proof (Bohr and Landau 1913; Edwards 2001, p. 187).


REFERENCES:

Bohr, H. and Landau, E. "Beiträge zur Theorie der Riemannschen Zetafunktion." Math. Ann. 74, 3-30, 1913. Reprinted in Bohr, H. §B11 in Collected Works, Vol. 1.

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 159 and 376, 2004.

Edwards, H. M. "The Three Circles Theorem." §9.3 in Riemann's Zeta Function. New York: Dover, pp. 187-188, 2001.

Littlewood, J. E. "Quelques conséquences de l'hypothèse que la fonction zeta(s) n'a pas de zéros dans le demi-plan R(x)>1/2." C. R. Acad. Sci. Paris 154, 263-266, 1912.

Robinson, R. M. "Hadamard's Three Circles Theorem." Bull. Amer. Math. Soc. 50, 795-802, 1944.

EN

تصفح الموقع بالشكل العمودي