تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Subfactorial
المؤلف: Cajori, F.
المصدر: A History of Mathematical Notations, Vol. 2. New York: Cosimo Classics, 2007.
الجزء والصفحة: ...
19-5-2019
3024
The th subfactorial (also called the derangement number; Goulden and Jackson 1983, p. 48; Graham et al. 2003, p. 1050) is the number of permutations of objects in which no object appears in its natural place (i.e., "derangements").
The term "subfactorial "was introduced by Whitworth (1867 or 1878; Cajori 1993, p. 77). Euler (1809) calculated the first ten terms.
The first few values of for , 2, ... are 0, 1, 2, 9, 44, 265, 1854, 14833, ... (OEIS A000166). For example, the only derangements of {1,2,3}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline5.gif" style="height:14px; width:47px" /> are {2,3,1}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline6.gif" style="height:14px; width:47px" /> and {3,1,2}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline7.gif" style="height:14px; width:47px" />, so . Similarly, the derangements of {1,2,3,4}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline9.gif" style="height:14px; width:62px" /> are {2,1,4,3}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline10.gif" style="height:14px; width:62px" />, {2,3,4,1}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline11.gif" style="height:14px; width:62px" />, {2,4,1,3}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline12.gif" style="height:14px; width:62px" />, {3,1,4,2}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline13.gif" style="height:14px; width:62px" />, {3,4,1,2}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline14.gif" style="height:14px; width:62px" />, {3,4,2,1}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline15.gif" style="height:14px; width:62px" />, {4,1,2,3}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline16.gif" style="height:14px; width:62px" />, {4,3,1,2}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline17.gif" style="height:14px; width:62px" />, and {4,3,2,1}" src="http://mathworld.wolfram.com/images/equations/Subfactorial/Inline18.gif" style="height:14px; width:62px" />, so .
Sums and formulas for include
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
where is a factorial, is a binomial coefficient, and is the incomplete gamma function.
Subfactorials are implemented in the Wolfram Language as Subfactorial[n].
A plot the real and imaginary parts of the subfactorial generalized to any real argument is illustrated above, with the usual integer-valued subfactorial corresponding to nonnegative integer .
The subfactorials are also called the rencontres numbers and satisfy the recurrence relations
(5) |
|||
(6) |
The subfactorial can be considered a special case of a restricted rooks problem.
The subfactorial has generating function
(7) |
|||
(8) |
|||
(9) |
where is the exponential integral, and exponential generating function
(10) |
|||
(11) |
|||
(12) |
(OEIS A053557 and A053556).
Subfactorials are commonly denoted , (Graham et al. 2003, p. 194), (Dörrie 1965, p. 19), (Pemmaraju and Skiena 2003, p. 106), (Goulden and Jackson 1983, p. 48; van Lint and Wilson 1992, p. 90), or (Riordan 1980, p. 59; Stanley 1997, p. 489), the latter being especially used when viewing them as derangements.
Another equation is given by
(13) |
where is the usual factorial and is the nearest integer function. M. Hassani (pers. comm., Oct. 28, 2004) gave the forms
(14) |
for and
(15) |
for , where is the floor function.
An integral for is given by
(16) |
A continued fraction for is given by
(17) |
The numbers of decimal digits in for , 1, ... are 7, 158, 2568, 35660, 456574, 5565709, 65657059, ... (OEIS A114485).
The only prime subfactorial is .
The only number equal to the sum of subfactorials of its digits is
(18) |
(Madachy 1979).
The subfactorial may be analytically continued to the complex plane, as illustrated above.
REFERENCES:
Cajori, F. A History of Mathematical Notations, Vol. 2. New York: Cosimo Classics, 2007.
Dörrie, H. §6 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 19-21, 1965.
Euler, L. "Solution quaestionis curiosae ex doctrina combinationum." Mémoires Académie Sciences St. Pétersbourg 3, 57-64, 1809. Reprinted in Opera Omnia, Series Prima, Vol. 7. Leipzig, Germany: Teubner, pp. 435-440, 1915.
Goulden, I. P. and Jackson, D. M. Combinatorial Enumeration. New York: Wiley, 1983.
Graham, R. L.; Grötschel, M.; and Lovász, L. (Eds.). Handbook of Combinatorics, Vol. 2. Cambridge, MA: MIT Press, 2003.
Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, p. 167, 1979.
Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica.Cambridge, England: Cambridge University Press, 2003.
Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, 1980.
Sloane, N. J. A. Sequences A000166/M1937, A053556, A053557, and A114485 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. Figure M1937 in The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 67, 1997.
van Lint, J. H. and Wilson, R. M. A Course in Combinatorics. New York: Cambridge University Press, 1992.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 27, 1986.
Whitworth, W. A. Choice and Chance, Two Chapters of Arithmetic, with an Appendix Containing the Algebraical Treatment of Permutations and Combinations Newly Set Forth. Cambridge, England: Deighton, Bell, 1867.
Whitworth, W. A. Messenger Math. 1878.