تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Delta Function
المؤلف: Arfken, G.
المصدر: Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
الجزء والصفحة: ...
25-5-2019
3972
The delta function is a generalized function that can be defined as the limit of a class of delta sequences. The delta function is sometimes called "Dirac's delta function" or the "impulse symbol" (Bracewell 1999). It is implemented in the Wolfram Language as DiracDelta[x].
Formally, is a linear functional from a space (commonly taken as a Schwartz space or the space of all smooth functions of compact support ) of test functions . The action of on , commonly denoted or , then gives the value at 0 of for any function . In engineering contexts, the functional nature of the delta function is often suppressed.
The delta function can be viewed as the derivative of the Heaviside step function,
(1) |
(Bracewell 1999, p. 94).
The delta function has the fundamental property that
(2) |
and, in fact,
(3) |
for .
Additional identities include
(4) |
for , as well as
(5) |
|||
(6) |
More generally, the delta function of a function of is given by
(7) |
where the s are the roots of . For example, examine
(8) |
Then , so and , giving
(9) |
The fundamental equation that defines derivatives of the delta function is
(10) |
Letting in this definition, it follows that
(11) |
|||
(12) |
|||
(13) |
where the second term can be dropped since , so (13) implies
(14) |
In general, the same procedure gives
(15) |
but since any power of times integrates to 0, it follows that only the constant term contributes. Therefore, all terms multiplied by derivatives of vanish, leaving , so
(16) |
which implies
(17) |
Other identities involving the derivative of the delta function include
(18) |
(19) |
(20) |
where denotes convolution,
(21) |
and
(22) |
An integral identity involving is given by
(23) |
The delta function also obeys the so-called sifting property
(24) |
(Bracewell 1999, pp. 74-75).
A Fourier series expansion of gives
(25) |
|||
(26) |
|||
(27) |
|||
(28) |
so
(29) |
|||
(30) |
The delta function is given as a Fourier transform as
(31) |
Similarly,
(32) |
(Bracewell 1999, p. 95). More generally, the Fourier transform of the delta function is
(33) |
The delta function can be defined as the following limits as ,
(34) |
|||
(35) |
|||
(36) |
|||
(37) |
|||
(38) |
|||
(39) |
|||
(40) |
where is an Airy function, is a Bessel function of the first kind, and is a Laguerre polynomial of arbitrary positive integer order.
The delta function can also be defined by the limit as
(41) |
Delta functions can also be defined in two dimensions, so that in two-dimensional Cartesian coordinates
(42) |
(43) |
(44) |
and
(45) |
Similarly, in polar coordinates,
(46) |
(Bracewell 1999, p. 85).
In three-dimensional Cartesian coordinates
(47) |
(48) |
and
(49) |
in cylindrical coordinates ,
(50) |
In spherical coordinates ,
(51) |
(Bracewell 1999, p. 85).
A series expansion in cylindrical coordinates gives
(52) |
|||
(53) |
The solution to some ordinary differential equations can be given in terms of derivatives of (Kanwal 1998). For example, the differential equation
(54) |
has classical solution
(55) |
and distributional solution
(56) |
(M. Trott, pers. comm., Jan. 19, 2006). Note that unlike classical solutions, a distributional solution to an th-order ODE need not contain independent constants.
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 481-485, 1985.
Bracewell, R. "The Impulse Symbol." Ch. 5 in The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, pp. 74-104, 2000.
Dirac, P. A. M. Quantum Mechanics, 4th ed. London: Oxford University Press, 1958.
Gasiorowicz, S. Quantum Physics. New York: Wiley, pp. 491-494, 1974.
Kanwal, R. P. "Applications to Ordinary Differential Equations." Ch. 6 in Generalized Functions, Theory and Technique, 2nd ed.Boston, MA: Birkhäuser, pp. 291-255, 1998.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 97-98, 1984.
Spanier, J. and Oldham, K. B. "The Dirac Delta Function ." Ch. 10 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 79-82, 1987.
van der Pol, B. and Bremmer, H. Operational Calculus Based on the Two-Sided Laplace Integral. Cambridge, England: Cambridge University Press, 1955.