1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Airy Zeta Function

المؤلف:  Borwein, J.; Bailey, D.; and Girgensohn, R.

المصدر:  Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters

الجزء والصفحة:  ...

18-7-2019

1145

Airy Zeta Function

AiryZeta

Define the Airy zeta function for n=2, 3, ... by

 Z(n)=sum_(r)1/(r^n),

(1)

where the sum is over the real (negative) zeros r of the Airy function Ai(z). This has the closed-form representation

 Z(n)=(piT_(n-1)(0))/(Gamma(n)),

(2)

where Gamma(z) is the gamma function,

 T_n(z)=C^((n))(z)A+(d^(n-1))/(dz^(n-1))[Ai(z)Bi(z)] 
 -sum_(j=1)^n(n; j)C^((n-j))(z)(d^(j-1))/(dz^(j-1))[Ai(z)]^2,

(3)

where

A = int_0^infty[Ai(z)]^2dz

(4)

= 1/(3^(2/3)[Gamma(1/3)]^2)

(5)

and

 C(z)=(Bi(z))/(Ai(z))

(6)

(Crandall 1996; Borwein et al. 2004, p. 61).

Surprisingly, defining

X = 1/(2piAi(0)Bi(0))

(7)

= (3^(5/6))/(2pi)[Gamma(2/3)]^2

(8)

= (2pi)/(3^(1/6)[Gamma(1/3)]^2)

(9)

gives Z(n) as a polynomial in X (Borwein et al. 2004, pp. 61-62). The first few such polynomials are

Z(2) = X^2

(10)

Z(3) = 1/2(2X^3-1)

(11)

Z(4) = 1/3(3X^4-X)

(12)

Z(5) = 1/(12)(12X^5-5X^2)

(13)

Z(6) = 1/(20)(20X^6-10X^3+1)

(14)

(OEIS A096631 and A096632). The corresponding numerical values are approximately 0.531457, -0.112562, 0.0394431, -0.0155337, and 0.00638927, ....


REFERENCES:

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 61-62, 2004.

Crandall, R. E. "On the Quantum Zeta Function." J. Phys. A: Math. General 29, 6795-6816, 1996.

Sloane, N. J. A. Sequences A096631 and A096632 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي