1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Barnes G-Function

المؤلف:  Barnes, E. W.

المصدر:  "The Theory of the G-Function." Quart. J. Pure Appl. Math. 31

الجزء والصفحة:  ...

18-8-2019

2958

Barnes G-Function

BarnesGReImBarnesGContours

The Barnes G-function is an analytic continuation of the G-function defined in the construction of the Glaisher-Kinkelin constant

 G(n)=([Gamma(n)]^(n-1))/(H(n-1))

(1)

for n>0, where H(n) is the hyperfactorial, which has the special values

 G(n)={0   if n=-1,-2,...; 0!1!2!...(n-2)!   if n=0,1,2,...

(2)

for integer n. This function is what Sloane and Plouffe (1995) call the superfactorial, and the first few values for n=1, 2, ... are 1, 1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, ... (OEIS A000178).

The Barnes G-function can arise in spectral functions in mathematical physics (Voros 1987).

It is implemented in the Wolfram Language as BarnesG[n]. A special version of its natural logarithm optimized for large n is implemented in the Wolfram Language as LogBarnesG[n].

The Barnes G-function for complex z may be defined by

(3)

where gamma is the Euler-Mascheroni constant (Whittaker and Watson 1990, p. 264; Voros 1987). The product can be done in closed form, yielding the identity

(4)

for R[z]>0, where  is the derivative of the Hurwitz zeta function, Gamma(z) is the gamma function, and A is the Glaisher-Kinkelin constant. Another elegant closed-form expression is given by

 G(z)=(2pi)^(z/2)e^((z-1)[lnGamma(z)-z/2]-gamma_(-2)(z)),

(5)

where gamma_(-2)(z) is a polygamma function of negative order. The Barnes G-function and hyperfactorial H(z) satisfy the relation

 H(z-1)G(z)=e^((z-1)lnGamma(z))

(6)

for all complex z, where lnGamma(z) is the log gamma function.

G(z) is an entire function analogous to 1/Gamma(z), except that it has order 2 instead of 1.

BarnesG

The Barnes G-function is plotted above evaluated at integers values. A slight variant of the integer-valued Barnes G-function is sometimes known as the superfactorial.

The Barnes G-function satisfies the functional equation

 G(z+1)=Gamma(z)G(z),

(7)

and has the Taylor series

(8)

in |z|<1. It also gives an analytic solution to the finite product

(9)

The Barnes G-function has the equivalent reflection formulas

(10)

(11)

(12)

(Voros 1987; Whittaker and Watson 1990, p. 264).

The derivative is given by

(13)

where psi_0(z) is the digamma function.

A Stirling-like asymptotic series for R[z]>0 as z->infty is given by

(14)

(Voros 1987). This can be made more precise as

(15)

where B_k is a Bernoulli number (Adamchik 2001b; typo corrected).

G(n) has the special values

G(1/4) =

(16)

G(3/4) =

(17)

=

(18)

(OEIS A087013 and A087015) for n=k/4, where Gamma(z) is the gamma function, K is Catalan's constant, A is the Glaisher-Kinkelin constant, and

G(1/2) = A^(-3/2)pi^(-1/4)e^(1/8)2^(1/24)

(19)

G(3/2) = A^(-3/2)pi^(1/4)e^(1/8)2^(1/24)

(20)

G(5/2) = A^(-3/2)pi^(3/4)e^(1/8)2^(-23/24),

(21)

(OEIS A087014, A087016, and A087017) for n=k/2, where  is the derivative of the Riemann zeta function evaluated at -1. In general, for odd n=2k+1,

 G(k-1/2)=c_k(pi^((2k-3)/4)e^(1/8)2^(1/24))/(2^((k-1)(k-2)/2)A^(3/2)),

(22)

where

 c_k=product_(i=1)^(k-2)(2^iGamma(1/2+i))/(sqrt(pi))

(23)

for k>1, of which the first few terms are 1, 1, 1, 3, 45, 4725, 4465125, ... (OEIS A057863).

Another G-function is defined by Erdélyi et al. (1981, p. 20) as

 G(z)=psi_0(1/2+hz)-psi_0(1/2z),

(24)

where psi_0(z) is the digamma function. An unrelated pair of functions are denoted g_n and G_n and are known as Ramanujan g- and G-functions.


REFERENCES:

Adamchik, V. "On the Barnes Function." Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation (July 22-25, 2001, London, Canada). New York: Academic Press, pp. 15-20, 2001a.

Adamchik, V. "Symbolic and Numeric Computation of the Barnes Functions." In Electronic Proceedings of the 7th International Conference on Applications of Computer Algebra. Albuquerque Technical Vocational Institute, Albuquerque, New Mexico, USA. May 31-June 3, 2001(Ed. M. Wester). 2001b. http://math.unm.edu/ACA/2001/Proceedings/SymNum/Adamchik_paper.pdf.

Barnes, E. W. "The Theory of the G-Function." Quart. J. Pure Appl. Math. 31, 264-314, 1900.

Dyson, F. J. "Fredholm Determinants and Inverse Scattering Problems." Commun. Math. Phys. 47, 171-183, 1976.

Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, 1981.

Glaisher, J. W. L. "On a Numerical Continued Product." Messenger Math. 6, 71-76, 1877.

Glaisher, J. W. L. "On the Product 1^12^23^3...n^n." Messenger Math. 7, 43-47, 1878.

Glaisher, J. W. L. "On Certain Numerical Products." Messenger Math. 23, 145-175, 1893.

Glaisher, J. W. L. "On the Constant Which Occurs in the Formula for 1^12^23^3...n^n." Messenger Math. 24, 1-16, 1894.

Kinkelin, H. "Über eine mit der Gammafunktion verwandte Transcendente und deren Anwendung auf die Integralrechnung." J. reine angew. Math. 57, 122-158, 1860.

Lenard, A. "Some Remarks on Large Toeplitz Matrices." Pacific J. Math. 42, 137-145, 1972.

McCoy, B. and Wu, T. T. The Two-Dimensional Ising Model. Cambridge, MA: Harvard University Press, p. 264 and Appendix B, 1973.

Mitra, S. and Nijenhuis, B. "Exact Conjectured Expressions for Correlations in the Dense O(1) Loop Model on Cylinders." JSTAT, P10006, 2004.

Sloane, N. J. A. Sequences A000178/M2049, A057863, A087013, A087014, A087015, A087016, and A087017 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

Voros, A. "Spectral Functions, Special Functions and the Selberg Zeta Function." Commun. Math. Phys. 110, 439-465, 1987.

Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 264, 1990.

Widom, H. "The Strong Szegö Limit Theorem for Circular Arcs." Indiana Univ. Math. J. 21, 277-283, 1971.

Widom, H. "Toeplitz Determinants with Singular Generating Functions." Amer. J. Math. 95, 333-383, 1973.

EN

تصفح الموقع بالشكل العمودي