1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Condon-Shortley Phase

المؤلف:  Arfken, G.

المصدر:  Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press

الجزء والصفحة:  ...

23-9-2019

1635

Condon-Shortley Phase

The Condon-Shortley phase is the factor of (-1)^m that occurs in some definitions of the spherical harmonics (e.g., Arfken 1985, p. 682) to compensate for the lack of inclusion of this factor in the definition of the associated Legendre polynomials (e.g., Arfken 1985, p. 669).

Using the Condon-Shortley convention in the definition of the spherical harmonic after omitting it in the definition of P_l^m(costheta) gives

 Y_l^m(theta,phi)=(-1)^msqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)e^(imphi)

(Arfken 1985, p. 692), whereas using the definition of P_l^m(costheta) that already includes it gives

 Y_l^m(theta,phi)=sqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)e^(imphi)

(e.g., the Wolfram Language).

The Condon-Shortley phase is not necessary in the definition of the spherical harmonics, but including it simplifies the treatment of angular moment in quantum mechanics. In particular, they are a consequence of the ladder operators L_- and L_+ (Arfken 1985, p. 693).


REFERENCES:

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 682 and 692, 1985.

Condon, E. U. and Shortley, G. The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press, 1951.

Shore, B. W. and Menzel, D. H. Principles of Atomic Spectra. New York: Wiley, p. 158, 1968.

EN

تصفح الموقع بالشكل العمودي