تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
VECTOR REPRESENTATION OF IMPEDANCE
المؤلف: S. Gibilisco
المصدر: Physics Demystified
الجزء والصفحة: 391
17-10-2020
1724
VECTOR REPRESENTATION OF IMPEDANCE
Any impedance Z can be represented by a complex number R + jX, where R can be any nonnegative real number and X can be any real number. Such numbers can be plotted as points in the RX half-plane or as vectors with their end points at the origin (0+j0). Such vectors are called impedance vectors.
Imagine how an impedance vector changes as either R or X or both are varied. If X remains constant, an increase in R causes the vector to get longer. If R remains constant and XL gets larger, the vector also grows longer. If R stays the same as XC gets larger (negatively), the vector grows longer again. Think of point representing R+ jX moving around in the plane, and imagine where the corresponding points on the resistance and reactance axes lie. These points can be found by drawing straight lines from the point R+ jX to the R and X axes so that the lines intersect the axes at right angles. This is shown in Fig. 1 for several different points. Now think of the points for R and X moving toward the right and left or up and down on their axes. Imagine what happens to the point R+ jX and the corresponding vector from 0 + j0 to R+ jX in various scenarios. This is how impedance changes as the resistance and reactance in a circuit are varied.
Fig. 1. The RX impedance half-plane showing some points for specific complex-number impedances.