1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الكهربائية والمغناطيسية : الكهرومغناطيسية :

EARTH’S IONOSPHERE

المؤلف:  S. Gibilisco

المصدر:  Physics Demystified

الجزء والصفحة:  475

1-11-2020

1083

EARTH’S IONOSPHERE

The atmosphere of our planet becomes less dense with increasing altitude. Because of this, the energy received from the Sun is much greater at high altitudes than it is at the surface. High-speed subatomic particles, UV rays, and x-rays cause ionization of the rarefied gases in the upper atmosphere. Ionized regions occur at specific altitudes and comprise the ionosphere. The ionosphere causes absorption and refraction of radio waves. This makes long-distance communication or reception possible at some radiofrequencies.

Ionization in the upper atmosphere occurs in four fuzzy layers. The lowest region is called the D layer. It exists at an altitude of about 50 km (30 mi) and ordinarily is present only on the daylight side of the planet. This layer does not contribute to long-distance radio communications, and sometimes impedes them. The E layer, about 80 km (50 mi) above the surface, also exists mainly during the day, although nighttime ionization is sometimes observed. The E layer can facilitate medium-range radio communications at certain frequencies. The uppermost layers are called the F1 layer and the F2 layer. The F1 layer, normally present only on the daylight side of the Earth, forms at about 200 km (125 mi) altitude. The F2 layer, which exists more or less around the clock, is about 300 km (180 mi) above the surface. On the dark side of the Earth, when the F1 layer disappears, the F2 layer is sometimes called simply the F layer.

Figure 1 illustrates the relative altitudes of the ionospheric D, E, F1, and F2 layers above the Earth’s surface. All these layers have some effect on the way radio waves travel at very low, low, medium, and high frequencies. Sometimes, ionospheric effects can even be observed into the VHF portion of the radio spectrum. These layers not only make long-distance wireless communications possible between points on the Earth’s surface; they also prevent radio waves at frequencies below approximately 5 MHz from reaching the surface from outer space.

Fig. 1. Layers of the Earth’s ionosphere. These ionized regions affect the behavior of EM waves at some radio frequencies.

EN

تصفح الموقع بالشكل العمودي