تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Mean Deviation
المؤلف: Kenney, J. F. and Keeping, E. S.
المصدر: "Mean Absolute Deviation." §6.4 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand
الجزء والصفحة: ...
20-2-2021
1687
The mean deviation (also called the mean absolute deviation) is the mean of the absolute deviations of a set of data about the data's mean. For a sample size , the mean deviation is defined by
(1) |
where is the mean of the distribution. The mean deviation of a list of numbers is implemented in the Wolfram Language as MeanDeviation[data].
The mean deviation for a discrete distribution defined for , 2, ..., is given by
(2) |
Mean deviation is an important descriptive statistic that is not frequently encountered in mathematical statistics. This is essentially because while mean deviation has a natural intuitive definition as the "mean deviation from the mean," the introduction of the absolute value makes analytical calculations using this statistic much more complicated than the standard deviation
(3) |
As a result, least squares fitting and other standard statistical techniques rely on minimizing the sum of square residuals instead of the sum of absolute residuals.
For example, consider the discrete uniform distribution consisting of possible outcomes with for , 2, ..., . The mean is given by
(4) |
The variance (and therefore its square root, namely the standard deviation) is also straightforward to obtain as
(5) |
On the other hand, the mean deviation is given by
(6) |
This can be obtained in closed form, but is much more unwieldy since it requires breaking up the summand into two pieces and treating the cases of even and odd separately.
The following table summarizes the mean absolute deviations for some named continuous distributions, where is an incomplete beta function, is a beta function, is a gamma function, is the Euler-Mascheroni constant, is a Meijer G-function, is the exponential integral function, is erf, and is erfc.
distribution | M.D. |
beta distribution | |
chi-squared distribution | |
exponential distribution | |
gamma distribution | |
Gumbel distribution | |
half-normal distribution | |
Laplace distribution | |
logistic distribution | |
log normal distribution | |
Maxwell distribution | |
normal distribution | |
Pareto distribution | |
Rayleigh distribution | |
Student's t-distribution | |
Student's t-distribution | |
triangular distribution | |
triangular distribution | {(2(b+c-2a)^3)/(81(a-b)(a-c)) for a+b<2c; (2(a+c-2b)^3)/(81(a-b)(b-c)) for a+b>2c" src="https://mathworld.wolfram.com/images/equations/MeanDeviation/Inline35.gif" style="height:66px; width:197px" /> |
uniform distribution |
The following table summarizes the mean absolute deviations for some named discrete distributions, where .
distribution | M.D. |
Bernoulli distribution | |
binomial distribution | |
discrete uniform distribution | {1/4N for N even; ((N-1)(N+1))/(4N) for N odd" src="https://mathworld.wolfram.com/images/equations/MeanDeviation/Inline40.gif" style="height:58px; width:154px" /> |
geometric distribution | |
Poisson distribution | |
Zipf distribution |
REFERENCES:
Havil, J. "Ways of Means." §13.1 in Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 119-121, 2003.
Kenney, J. F. and Keeping, E. S. "Mean Absolute Deviation." §6.4 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 76-77 1962.