تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bivariate Normal Distribution
المؤلف: Abramowitz, M. and Stegun, I. A.
المصدر: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة: ...
28-2-2021
3104
The bivariate normal distribution is the statistical distribution with probability density function
(1) |
where
(2) |
and
(3) |
is the correlation of and (Kenney and Keeping 1951, pp. 92 and 202-205; Whittaker and Robinson 1967, p. 329) and is the covariance.
The probability density function of the bivariate normal distribution is implemented as MultinormalDistribution[mu1, mu2, sigma11, sigma12, sigma12, sigma22] in the Wolfram Language package MultivariateStatistics` .
The marginal probabilities are then
(4) |
|||
(5) |
and
(6) |
|||
(7) |
(Kenney and Keeping 1951, p. 202).
Let and be two independent normal variates with means and for , 2. Then the variables and defined below are normal bivariates with unit variance and correlation coefficient :
(8) |
|||
(9) |
To derive the bivariate normal probability function, let and be normally and independently distributed variates with mean 0 and variance 1, then define
(10) |
|||
(11) |
(Kenney and Keeping 1951, p. 92). The variates and are then themselves normally distributed with means and , variances
(12) |
|||
(13) |
and covariance
(14) |
The covariance matrix is defined by
(15) |
where
(16) |
Now, the joint probability density function for and is
(17) |
but from (◇) and (◇), we have
(18) |
As long as
(19) |
this can be inverted to give
(20) |
|||
(21) |
Therefore,
(22) |
and expanding the numerator of (22) gives
(23) |
so
(24) |
Now, the denominator of (◇) is
(25) |
so
(26) |
|||
(27) |
|||
(28) |
can be written simply as
(29) |
and
(30) |
Solving for and and defining
(31) |
gives
(32) |
|||
(33) |
But the Jacobian is
(34) |
|||
(35) |
|||
(36) |
so
(37) |
and
(38) |
where
(39) |
Q.E.D.
The characteristic function of the bivariate normal distribution is given by
(40) |
|||
(41) |
where
(42) |
and
(43) |
Now let
(44) |
|||
(45) |
Then
(46) |
where
(47) |
|||
(48) |
Complete the square in the inner integral
(49) |
Rearranging to bring the exponential depending on outside the inner integral, letting
(50) |
and writing
(51) |
gives
(52) |
Expanding the term in braces gives
(53) |
But is odd, so the integral over the sine term vanishes, and we are left with
(54) |
Now evaluate the Gaussian integral
(55) |
|||
(56) |
to obtain the explicit form of the characteristic function,
(57) |
In the singular case that
(58) |
(Kenney and Keeping 1951, p. 94), it follows that
(59) |
(60) |
|||
(61) |
|||
(62) |
|||
(63) |
so
(64) |
|||
(65) |
where
(66) |
|||
(67) |
The standardized bivariate normal distribution takes and . The quadrant probability in this special case is then given analytically by
(68) |
|||
(69) |
|||
(70) |
(Rose and Smith 1996; Stuart and Ord 1998; Rose and Smith 2002, p. 231). Similarly,
(71) |
|||
(72) |
|||
(73) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 936-937, 1972.
Holst, E. "The Bivariate Normal Distribution." http://www.ami.dk/research/bivariate/.
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.
Kotz, S.; Balakrishnan, N.; and Johnson, N. L. "Bivariate and Trivariate Normal Distributions." Ch. 46 in Continuous Multivariate Distributions, Vol. 1: Models and Applications, 2nd ed. New York: Wiley, pp. 251-348, 2000.
Rose, C. and Smith, M. D. "The Multivariate Normal Distribution." Mathematica J. 6, 32-37, 1996.
Rose, C. and Smith, M. D. "The Bivariate Normal." §6.4 A in Mathematical Statistics with Mathematica. New York: Springer-Verlag, pp. 216-226, 2002.
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, p. 118, 1992.
Stuart, A.; and Ord, J. K. Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed. New York: Oxford University Press, 1998.
Whittaker, E. T. and Robinson, G. "Determination of the Constants in a Normal Frequency Distribution with Two Variables" and "The Frequencies of the Variables Taken Singly." §161-162 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 324-328, 1967.