1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الاحتمالات و الاحصاء :

Chi-Squared Test

المؤلف:  Kenney, J. F. and Keeping, E. S.

المصدر:  Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.

الجزء والصفحة:  ...

1-5-2021

1804

Chi-Squared Test

 

Let the probabilities of various classes in a distribution be p_1p_2, ..., p_k, with observed frequencies m_1m_2, ..., m_k. The quantity

 chi_s^2=sum_(i=1)^k((m_i-Np_i)^2)/(Np_i)

(1)

is therefore a measure of the deviation of a sample from expectation, where N is the sample size. Karl Pearson proved that the limiting distribution of chi_s^2 is a chi-squared distribution (Kenney and Keeping 1951, pp. 114-116).

The probability that the distribution assumes a value of chi^2 greater than the measured value chi_s^2 is then given by

P(chi^2>=chi_s^2) = int_(chi_s^2)^inftyf(chi^2)d(chi^2)

(2)

= 1/2int_(chi_s^2)^infty(((chi^2)/2)^((k-3)/2))/(Gamma((k-1)/2))e^(-chi^2/2)d(chi^2)

(3)

= (Gamma((k-1)/2,1/2chi_s^2))/(Gamma((k-1)/2)).

(4)

There are some subtleties involved in using the chi^2 test to fit curves (Kenney and Keeping 1951, pp. 118-119). When fitting a one-parameter solution using chi^2, the best-fit parameter value can be found by calculating chi^2 at three points, plotting against the parameter values of these points, then finding the minimum of a parabola fit through the points (Cuzzi 1972, pp. 162-168).


REFERENCES:

Cuzzi, J. The Subsurface Nature of Mercury and Mars from Thermal Microwave Emission. Ph.D. Thesis. Pasadena, CA: California Institute of Technology, 1972.

Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.

EN

تصفح الموقع بالشكل العمودي