EN

الرئيسية

الأخبار

صور

فيديو

صوت

أقلام

مفتاح

رشفات

مشكاة

منشور

اضاءات

قصص


المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات التطبيقية :

Interpolation

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  "Interpolation." §25.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

19-11-2021

2082

Interpolation

The computation of points or values between ones that are known or tabulated using the surrounding points or values.

In particular, given a univariate function f=f(x), interpolation is the process of using known values f(x_0),f(x_1),f(x_2),...,f(x_n) to find values for f(x) at points x!=x_ii=0,1,2,...,n. In general, this technique involves the construction of a function L(x) called the interpolant which agrees with f at the points x=x_i and which is then used to compute the desired values.

Unsurprisingly, one can talk about interpolation methods for multivariate functions as well, though these tend to be substantially more involved than their univariate counterparts.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Interpolation." §25.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 878-882, 1972.

Iyanaga, S. and Kawada, Y. (Eds.). "Interpolation." Appendix A, Table 21 in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1482-1483, 1980.

Meijering, E. "A Chronology of Interpolation: From Ancient Astronomy to Modern Signal and Image Processing." Proc. IEEE 90, 319-342, 2002. http://bigwww.epfl.ch/publications/meijering0201.pdf.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Interpolation and Extrapolation." Ch. 3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 99-122, 1992.

Whittaker, E. T. and Robinson, G. "Interpolation with Equal Intervals of the Argument." Ch. 1 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 1-34, 1967.

EN

تصفح الموقع بالشكل العمودي