تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Life Expectancy
المؤلف: Steinhaus, H
المصدر: Mathematical Snapshots, 3rd ed. New York: Dover
الجزء والصفحة: pp. 294-295
21-12-2021
1364
An table is a tabulation of numbers which is used to calculate life expectancies.
0 | 1000 | 200 | 1.00 | 0.20 | 0.90 | 2.70 | 2.70 |
1 | 800 | 100 | 0.80 | 0.12 | 0.75 | 1.80 | 2.25 |
2 | 700 | 200 | 0.70 | 0.29 | 0.60 | 1.05 | 1.50 |
3 | 500 | 300 | 0.50 | 0.60 | 0.35 | 0.45 | 0.90 |
4 | 200 | 200 | 0.20 | 1.00 | 0.10 | 0.10 | 0.50 |
5 | 0 | 0 | 0.00 | -- | 0.00 | 0.00 | -- |
1000 | 2.70 |
: Age category (, 1, ..., ). These values can be in any convenient units, but must be chosen so that no observed lifespan extends past category .
: Census size, defined as the number of individuals in the study population who survive to the beginning of age category . Therefore, (the total population size) and .
: ; . Crude death rate, which measures the number of individuals who die within age category .
: . Survivorship, which measures the proportion of individuals who survive to the beginning of age category .
: ; . Proportional death rate, or "risk," which measures the proportion of individuals surviving to the beginning of age category who die within that category.
: . Midpoint survivorship, which measures the proportion of individuals surviving to the midpoint of age category . Note that the simple averaging formula must be replaced by a more complicated expression if survivorship is nonlinear within age categories. The sum gives the total number of age categories lived by the entire study population.
: ; . Measures the total number of age categories left to be lived by all individuals who survive to the beginning of age category .
: ; . Life expectancy, which is the mean number of age categories remaining until death for individuals surviving to the beginning of age category .
For all , . This means that the total expected lifespan increases monotonically. For instance, in the table above, the one-year-olds have an average age at death of , compared to 2.70 for newborns. In effect, the age of death of older individuals is a distribution conditioned on the fact that they have survived to their present age.
It is common to study survivorship as a semilog plot of vs. , known as a survivorship curve. A so-called table can be used to calculate the mean generation time of a population. Two tables are illustrated below.
Population 1
0 | 1.00 | 0.00 | 0.00 | 0.00 |
1 | 0.70 | 0.50 | 0.35 | 0.35 |
2 | 0.50 | 1.50 | 0.75 | 1.50 |
3 | 0.20 | 0.00 | 0.00 | 0.00 |
4 | 0.00 | 0.00 | 0.00 | 0.00 |
(1) |
|||
(2) |
Population 2
0 | 1.00 | 0.00 | 0.00 | 0.00 |
1 | 0.70 | 0.00 | 0.00 | 0.00 |
2 | 0.50 | 2.00 | 1.00 | 2.00 |
3 | 0.20 | 0.50 | 0.10 | 0.30 |
4 | 0.00 | 0.00 | 0.00 | 0.00 |
(3) |
|||
(4) |
: Age category (, 1, ..., ). These values can be in any convenient units, but must be chosen so that no observed lifespan extends past category (as in an table).
: . Survivorship, which measures the proportion of individuals who survive to the beginning of age category (as in an table).
: The average number of offspring produced by an individual in age category while in that age category. therefore represents the average lifetime number of offspring produced by an individual of maximum lifespan.
: The average number of offspring produced by an individual within age category weighted by the probability of surviving to the beginning of that age category. therefore represents the average lifetime number of offspring produced by a member of the study population. It is called the net reproductive rate per generation and is often denoted .
: A column weighting the offspring counted in the previous column by their parents' age when they were born. Therefore, the ratio is the mean generation time of the population.
The Malthusian parameter measures the reproductive rate per unit time and can be calculated as . For an exponentially increasing population, the population size at time is then given by
(5) |
In the above two tables, the populations have identical reproductive rates of . However, the shift toward later reproduction in population 2 increases the generation time, thus slowing the rate of population growth. Often, a slight delay of reproduction decreases population growth more strongly than does even a fairly large reduction in reproductive rate.
REFERENCES:
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 294-295, 1999.