1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات التطبيقية :

Life Expectancy

المؤلف:  Steinhaus, H

المصدر:  Mathematical Snapshots, 3rd ed. New York: Dover

الجزء والصفحة:  pp. 294-295

21-12-2021

1364

Life Expectancy

An l_x table is a tabulation of numbers which is used to calculate life expectancies.

x n_x d_x l_x q_x L_x T_x e_x
0 1000 200 1.00 0.20 0.90 2.70 2.70
1 800 100 0.80 0.12 0.75 1.80 2.25
2 700 200 0.70 0.29 0.60 1.05 1.50
3 500 300 0.50 0.60 0.35 0.45 0.90
4 200 200 0.20 1.00 0.10 0.10 0.50
5 0 0 0.00 -- 0.00 0.00 --
sum   1000 2.70        

x: Age category (x=0, 1, ..., k). These values can be in any convenient units, but must be chosen so that no observed lifespan extends past category k-1.

n_x: Census size, defined as the number of individuals in the study population who survive to the beginning of age category x. Therefore, n_0=N (the total population size) and n_k=0.

d_x=n_x-n_(x+1)sum_(i=0)^(k)d_i=n_0. Crude death rate, which measures the number of individuals who die within age category x.

l_x=n_x/n_0. Survivorship, which measures the proportion of individuals who survive to the beginning of age category x.

q_x=d_x/n_xq_(k-1)=1. Proportional death rate, or "risk," which measures the proportion of individuals surviving to the beginning of age category x who die within that category.

L_x=(l_x+l_(x+1))/2. Midpoint survivorship, which measures the proportion of individuals surviving to the midpoint of age category x. Note that the simple averaging formula must be replaced by a more complicated expression if survivorship is nonlinear within age categories. The sum sum_(i=0)^(k)L_x gives the total number of age categories lived by the entire study population.

T_x=T_(x-1)-L_(x-1)T_0=sum_(i=0)^(k)L_x. Measures the total number of age categories left to be lived by all individuals who survive to the beginning of age category x.

e_x=T_x/l_xe_(k-1)=1/2. Life expectancy, which is the mean number of age categories remaining until death for individuals surviving to the beginning of age category x.

For all xe_(x+1)+1>e_x. This means that the total expected lifespan increases monotonically. For instance, in the table above, the one-year-olds have an average age at death of 2.25+1=3.25, compared to 2.70 for newborns. In effect, the age of death of older individuals is a distribution conditioned on the fact that they have survived to their present age.

It is common to study survivorship as a semilog plot of l_x vs. x, known as a survivorship curve. A so-called l_xm_x table can be used to calculate the mean generation time of a population. Two l_xm_x tables are illustrated below.

Population 1

x l_x m_x l_xm_x xl_xm_x
0 1.00 0.00 0.00 0.00
1 0.70 0.50 0.35 0.35
2 0.50 1.50 0.75 1.50
3 0.20 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
      R_0=1.10 sum=1.85
T = (sumxl_xm_x)/(suml_xm_x)=(1.85)/(1.10)=1.68

(1)

r = (lnR_0)/T=(ln1.10)/(1.68)=0.057.

(2)

Population 2

x l_x m_x l_xm_x xl_xm_x
0 1.00 0.00 0.00 0.00
1 0.70 0.00 0.00 0.00
2 0.50 2.00 1.00 2.00
3 0.20 0.50 0.10 0.30
4 0.00 0.00 0.00 0.00
      R_0=1.10 sum=2.30
T = (sumxl_xm_x)/(suml_xm_x)=(2.30)/(1.10)=2.09

(3)

r = (lnR_0)/T=(ln1.10)/(2.09)=0.046.

(4)

x: Age category (x=0, 1, ..., k). These values can be in any convenient units, but must be chosen so that no observed lifespan extends past category k-1 (as in an l_x table).

l_x=n_x/n_0. Survivorship, which measures the proportion of individuals who survive to the beginning of age category x (as in an l_x table).

m_x: The average number of offspring produced by an individual in age category x while in that age categorysum_(i=0)^(k)m_x therefore represents the average lifetime number of offspring produced by an individual of maximum lifespan.

l_xm_x: The average number of offspring produced by an individual within age category x weighted by the probability of surviving to the beginning of that age category. sum_(i=0)^(k)l_xm_x therefore represents the average lifetime number of offspring produced by a member of the study population. It is called the net reproductive rate per generation and is often denoted R_0.

xl_xm_x: A column weighting the offspring counted in the previous column by their parents' age when they were born. Therefore, the ratio T=sum(xl_xm_x)/sum(l_xm_x) is the mean generation time of the population.

The Malthusian parameter r measures the reproductive rate per unit time and can be calculated as r=(lnR_0)/T. For an exponentially increasing population, the population size N(t) at time t is then given by

 N(t)=N_0e^(rt).

(5)

In the above two tables, the populations have identical reproductive rates of R_0=1.10. However, the shift toward later reproduction in population 2 increases the generation time, thus slowing the rate of population growth. Often, a slight delay of reproduction decreases population growth more strongly than does even a fairly large reduction in reproductive rate.


REFERENCES:

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 294-295, 1999.

EN

تصفح الموقع بالشكل العمودي