تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Recursively Enumerable Set
المؤلف: Davis, M
المصدر: Computability and Unsolvability. New York: Dover 1982.
الجزء والصفحة: ...
20-1-2022
689
A set of integers is said to be recursively enumerable if it constitutes the range of a recursive function, i.e., if there exists a recursive function that can eventually generate any element in (Wolfram 2002, p. 1138). Any recursive set is also recursively enumerable.
The union and intersection of two recursively enumerable sets are also recursively enumerable.
Recursively undecidable problems give examples of recursively enumerable sets that are not recursive. For example, convergence of is known to be recursively undecidable, where denotes the Turing machine with Gödel number . Hence the set of all for which is convergent is not recursive. However, this set is recursively enumerable because it is the range of defined as follows:
(1) |
A set is recursive iff both and its complement are recursively enumerable. This provides an approach to constructing additional sets that are not recursively enumerable. In particular, the set of all Gödel numbers of total Turing machines is an example of a set which is not recursively enumerable.
The complements of recursively enumerable but not recursive sets are all not recursively enumerable, although complements of sets that are not recursively enumerable are not necessarily recursively enumerable. For instance, the complement of the set of all Gödel numbers of total Turing machines is not recursively enumerable.
One of fundamental properties of recursively enumerable sets is that they could be alternatively defined by domains as opposed to ranges. In particular, a set is recursively enumerable iff is the domain of a recursive function.
Davis, M. Computability and Unsolvability. New York: Dover 1982.
Rogers, H. Theory of Recursive Functions and Effective Computability. Cambridge, MA: MIT Press, 1987.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1138, 2002.