1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات المتقطعة : المنطق :

Hyperfinite Set

المؤلف:  Albeverio, S.; Fenstad, J.; Hoegh-Krohn, R.; and Lindstrøom, T.

المصدر:  Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press, 1986.

الجزء والصفحة:  ...

13-2-2022

930

Hyperfinite Set

One of the most useful tools in nonstandard analysis is the concept of a hyperfinite set. To understand a hyperfinite set, begin with an arbitrary infinite set X whose members are not sets, and form the superstructure S(X) over X. Assume that X includes the natural numbers as elements, let N denote the set of natural numbers as elements of X, and let ^*S(X) be an enlargement of S(X). By the transfer principle, the ordering < on N extends to a strict linear ordering on ^*N, which can be denoted with the symbol "<." Since ^*S(X) is an enlargement of S(X), it satisfies the concurrency principle, so that there is an element nu of ^*N such that if n in N, then n<nu. This follows because the relation < is a concurrent relation on the set of natural numbers.

Any member nu in ^*N that is not also an element of N is called an infinite nonstandard natural number, and for any set A in ^*S(X), if A is in one-to-one correspondence with any element of ^*N, then A is called a hyperfinite set in ^*S(X). Because there are infinite nonstandard natural numbers in any enlargement ^*S(X) of S(X), there are hyperfinite sets that are not finite, in any such enlargement. Such hyperfinite sets can be used to study infinite structures satisfying various finiteness conditions.


REFERENCES

Albeverio, S.; Fenstad, J.; Hoegh-Krohn, R.; and Lindstrøom, T. Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press, 1986.

Anderson, R. M. "Nonstandard Analysis with Applications to Economics." Ch. 39 in Handbook of Mathematical Economics, Vol. 4 (Ed. W. Hildenbrand and H. Sonnenschein). New York: Elsevier, pp. 2145-2208, 1991.

Dauben, J. W. Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey. Princeton, NJ: Princeton University Press, 1998.

Davis, P. J. and Hersch, R. The Mathematical Experience. Boston, MA: Birkhäuser, 1981.

Insall, M. "Nonstandard Methods and Finiteness Conditions in Algebra." Zeitschr. f. Math., Logik, und Grundlagen d. Math. 37, 525-532, 1991.

Keisler, H. J. Elementary Calculus: An Infinitesimal Approach. Boston, MA: PWS, 1986.

 http://www.math.wisc.edu/~keisler/calc.html.Lindstrøom, T. "An Invitation to Nonstandard Analysis." In Nonstandard Analysis and Its Applications (Ed. N. Cutland). New York: Cambridge University Press, 1988.

Robinson, A. Non-Standard Analysis. Princeton, NJ: Princeton University Press, 1996.

Stewart, I. "Non-Standard Analysis." In From Here to Infinity: A Guide to Today's Mathematics. Oxford, England: Oxford University Press, pp. 80-81, 1996.

EN

تصفح الموقع بالشكل العمودي