تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Nonstandard Analysis
المؤلف: Albeverio, S.; Fenstad, J.; Hoegh-Krohn, R.; and Lindstrøom, T.
المصدر: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press, 1986.
الجزء والصفحة: ...
13-2-2022
755
Nonstandard analysis is a branch of mathematical logic which introduces hyperreal numbers to allow for the existence of "genuine infinitesimals," which are numbers that are less than 1/2, 1/3, 1/4, 1/5, ..., but greater than 0. Abraham Robinson developed nonstandard analysis in the 1960s. The theory has since been investigated for its own sake and has been applied in areas such as Banach spaces, differential equations, probability theory, mathematical economics, and mathematical physics.
The axioms used in nonstandard analysis are first-order set theoretical axioms, but many of the topics studied in classical analysis that are axiomatized with higher-order axioms can be reformulated in set theoretical terms in a first-order axiomatization. As an example, consider the notion of a measure on a set. In classical analysis, one studies measure spaces. A measure space consists of a set , together with a measure , which is a function from some sigma-algebra of subsets of into the reals. This way of looking at measure spaces is a way that uses higher-order logic, and the measure is a sort of "higher order object", since it is not an element of . But if one forms the superstructure that has as its individuals the members of and the real numbers, and is constructed as described in typical texts on nonstandard analysis, as the union of (roughly) a tower of iterated power sets, with the only fundamental relation being the membership relation, then in the first-order theory of this superstructure, one may refer to the measure as an element, for it is in fact an element of .
Loosely, nonstandard methods replace higher-order concepts with first-order analogs. It looks at them from a different angle. Crucially, however, the angle at which the nonstandard analyst looks at the axioms of analysis provides for an average case reduction in complexity that provides shorter proofs of various results, and will one day lead to the proof of a result which is not accessible to classical mathematics without nonstandard methods, precisely because its classical proof is too long to write down in the length of time humans will reside on Earth.
In addition, in the nonstandard analysis community, there is a growing number of results that are not being translated into standard results, because the intuitive content of certain theorems is greater and/or clearer when left in nonstandard terminology. Examples include the use of nonstandard analysis in mathematical economics to describe the behavior of large economies and the use of nonstandard methods to give meaning to concepts that do not classically make sense, such as certain products of infinitely many independent, equally weighted random variables.
Albeverio, S.; Fenstad, J.; Hoegh-Krohn, R.; and Lindstrøom, T. Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press, 1986.
Anderson, R. M. "Nonstandard Analysis with Applications to Economics." Ch. 39 in Handbook of Mathematical Economics, Vol. 4 (Ed. W. Hildenbrand and H. Sonnenschein). New York: Elsevier, pp. 2145-2208, 1991.
Apps, P. "What is Nonstandard Analysis?" http://members.tripod.com/PhilipApps/nonstandard.html.Dauben, J. W. Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey. Princeton, NJ: Princeton University Press, 1998.
Davis, P. J. and Hersch, R. The Mathematical Experience. Boston, MA: Birkhäuser, 1981.Hurd, A. E. and Loeb, P. A. An Introduction to Nonstandard Real Analysis. New York: Academic Press, 1985.
Keisler, H. J. Elementary Calculus: An Infinitesimal Approach. Boston, MA: PWS, 1986.
http://www.math.wisc.edu/~keisler/calc.html.Lindstrøom, T. "An Invitation to Nonstandard Analysis." In Nonstandard Analysis and Its Applications (Ed. N. Cutland). New York: Cambridge University Press, 1988.
Loeb, P. A. and Wolff, M. Nonstandard Analysis for the Working Mathematician. Dordrecht, Netherlands: Kluwer, 2000.
Robinson, A. Non-Standard Analysis. Princeton, NJ: Princeton University Press, 1996.Stewart, I. "Non-Standard Analysis." In From Here to Infinity: A Guide to Today's Mathematics. Oxford, England: Oxford University Press, pp. 80-81, 1996.
Sun, Y. "The Almost Equivalence of Pairwise and Mutual Independence and the Duality with Exchangeability." Probab. Th. Related Fields 112, 425-456, 1998.