Anisohedral Tiling
المؤلف:
Klee, V. and Wagon, S.
المصدر:
Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.
الجزء والصفحة:
...
23-2-2022
1276
Anisohedral Tiling
A plane tiling is said to be isohedral if the symmetry group of the tiling acts transitively on the tiles, and
-isohedral if the tiles fall into n orbits under the action of the symmetry group of the tiling. A
-anisohedral tiling is a tiling which permits no
-isohedral tiling with
.

The numbers of anisohedral polyominoes with
, 9, 10, ... are 1, 9, 44, 108, 222, ... (OEIS A075206), the first few of which are illustrated above (Myers).
REFERENCES
Berglund, J. "Is There a
-Anisohedral Tile for
?" Amer. Math. Monthly 100, 585-588, 1993.
Berglund, J. "Anisohedral Tilings Page." http://www.angelfire.com/mn3/anisohedral/.Grünbaum, B. and Shephard, G. C. §9.4 in Tilings and Patterns. New York: W. H. Freeman, 1986.
Klee, V. and Wagon, S. Old and New Unsolved Problems in Plane Geometry and Number Theory. Washington, DC: Math. Assoc. Amer., 1991.
Myers, J. "Polyomino Tiling." http://www.srcf.ucam.org/~jsm28/tiling/.Sloane, N. J. A. Sequence A075206 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في الرياضيات في العلوم الاخرى
اخر الاخبار
اخبار العتبة العباسية المقدسة