تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Zenodorus
المؤلف: G J Toomer
المصدر: Diocles On Burning Mirrors, Sources in the History of Mathematics and the Physical Sciences 1
الجزء والصفحة: ...
20-10-2015
1067
Born: about 200 BC in Athens, Greece
Died: about 140 BC in Greece
We know little of Zenodorus's life but he is mentioned in the Arabic translation of Diocles' On burning mirrors where it is stated [3]:-
And when Zenodorus the astronomer came down to Arcadia and was introduced to us, he asked us how to find a mirror surface such that when it is placed facing the sun the rays reflected from it meet a point and thus cause burning.
Toomer notes that his translation of 'when Zenodorus the astronomer came down to Arcadia and was introduced to us' could, perhaps, be translated 'when Zenodorus the astronomer came down to Arcadia and was appointed to a teaching position there'.
Before the discovery of the Arabic text of Diocles' On burning mirrors, Zenodorus was known to us mainly because of references to his treatise On isometric figures which is lost. There is another interesting source of information however. When Vesuvius erupted in 79 AD, Herculaneum together with Pompeii and Stabiae, was destroyed. Herculaneum was buried by a compact mass of material about 16 metres deep which preserved the city until excavations began in the 18th century. Special conditions of humidity of the ground conserved wood, cloth, food, and in particular many papyri.
The papyri contain remarkable information and in particular there is a biography of the philosopher Philonides. This biography speaks of Zenodorus as a friend of Philonides and, although complete certainty is impossible, we can be confident that this reference to Zenodorus is to the mathematician described in this article. Two visits by Zenodorus to Athens are described in the biography.
Despite the loss of Zenodorus's treatise On isometric figures, we do know something of the results which it contained since Theon of Alexandria quotes a number of propositions from Zenodorus's work when he is giving his commentary on Ptolemy's Syntaxis. Pappus also made use of Zenodorus's On isometric figures in Book V of his own work and in fact a comparison with what Theon of Alexandria has presented shows that Pappus followed Zenodorus's presentation rather closely.
In On isometric figures Zenodorus himself follows the style of Euclid and Archimedes quite closely and he refers to results of Archimedes from his treatise Measurement of a circle.
Zenodorus studied the area of a figure with a fixed perimeter and the volume of a solid figure with fixed surface. For example he showed that among polygons with equal perimeter and an equal number of sides, the regular polygon has the greatest area.
He also showed that a circle is greater than any regular polygon of the same perimeter. To do this Zenodorus makes use of Archimedes result that the area of a circle is equal to that of a right-angled triangle of perpendicular side equal to the radius of the circle and base equal to the length of the circumference of the circle.
The treatise contains three-dimensional geometry results as well as two-dimensional. In particular he proved that the sphere was the solid figure of least surface area for a given volume.
Books:
Articles: