1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : الميكانيك :

Symmetry in physics

المؤلف:   Richard Feynman, Robert Leighton and Matthew Sands

المصدر:  The Feynman Lectures on Physics

الجزء والصفحة:  Volume I, Chapter 11

2024-02-08

1188

The word “symmetry” is used here with a special meaning, and therefore needs to be defined. When is a thing symmetrical—how can we define it? When we have a picture that is symmetrical, one side is somehow the same as the other side. Professor Hermann Weyl has given this definition of symmetry: a thing is symmetrical if one can subject it to a certain operation and it appears exactly the same after the operation. For instance, if we look at a silhouette of a vase that is left-and-right symmetrical, then turn it 180 around the vertical axis, it looks the same. We shall adopt the definition of symmetry in Weyl’s more general form, and in that form, we shall discuss symmetry of physical laws.

Suppose we build a complex machine in a certain place, with a lot of complicated interactions, and balls bouncing around with forces between them, and so on. Now suppose we build exactly the same kind of equipment at some other place, matching part by part, with the same dimensions and the same orientation, everything the same only displaced laterally by some distance. Then, if we start the two machines in the same initial circumstances, in exact correspondence, we ask: will one machine behave exactly the same as the other? Will it follow all the motions in exact parallelism? Of course, the answer may well be no, because if we choose the wrong place for our machine, it might be inside a wall and interferences from the wall would make the machine not work.

All of our ideas in physics require a certain amount of common sense in their application; they are not purely mathematical or abstract ideas. We have to understand what we mean when we say that the phenomena are the same when we move the apparatus to a new position. We mean that we move everything that we believe is relevant; if the phenomenon is not the same, we suggest that something relevant has not been moved, and we proceed to look for it. If we never find it, then we claim that the laws of physics do not have this symmetry. On the other hand, we may find it—we expect to find it—if the laws of physics do have this symmetry; looking around, we may discover, for instance, that the wall is pushing on the apparatus. The basic question is, if we define things well enough, if all the essential forces are included inside the apparatus, if all the relevant parts are moved from one place to another, will the laws be the same? Will the machinery work the same way?

It is clear that what we want to do is to move all the equipment and essential influences, but not everything in the world—planets, stars, and all—for if we do that, we have the same phenomenon again for the trivial reason that we are right back where we started. No, we cannot move everything. But it turns out in practice that with a certain amount of intelligence about what to move, the machinery will work. In other words, if we do not go inside a wall, if we know the origin of the outside forces, and arrange that those are moved too, then the machinery will work the same in one location as in another.

EN

تصفح الموقع بالشكل العمودي