علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
Substitution of C=O for C=C: a brief look at the Wittig reaction
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص237-238
2025-05-15
26
Before we leave substitution reactions of carbonyl groups, there is one more reaction that we must introduce. It is an important one and we will come back to it again later in this book, particularly in Chapter 27. It also has a rather different mechanism from most you have met in recent chapters, but we talk about it here because the overall consequence of the Wittig reaction is the substitution of a C=C bond for a C=O bond. We don’t normally tell you the name of a reaction before even mentioning how to do it, but here we make an exception because the reagents are rather unusual and need explaining in detail. The Wittig reaction is a reaction between a carbonyl compound (aldehyde or ketone only) and a species known as a phosphonium ylid. An ylid (or ylide) is a species with positive and negative charges on adjacent atoms, and phosphonium ylids are made from phospho nium salts by deprotonating them with a strong base. You have already met phosphonium salts in Chapter 5, where you saw the reaction of a phosphine (triphenylphosphine) with an alkyl halide (methyl iodide) to give the tetrahedral phosphonium salt.
So here is a typical Wittig reaction: it starts with a phosphonium salt, which is treated with a strong base such as BuLi or sodium hydride, and then with a carbonyl compound; the alkene forms in 85% yield.
What about the mechanism? We warned you that the mechanism is rather different from all the others you have met in this chapter, but nonetheless it begins with attack on the
carbonyl group by a nucleophile; the nucleophile is the carbanion part of the phosphonium ylid. This reaction generates a negatively charged oxygen that attacks the positively charged phosphorus and gives a four-membered ring called an oxaphosphetane.
Now, this four-membered ring (like many others) is unstable, and it can collapse in a way that forms two double bonds. Here are the curly arrows: the mechanism is cyclic and gives the alkene, which is the product of the reaction along with a phosphine oxide.
The chemistry of some elements is dominated by one particular property, and a theme running right through the chemistry of phosphorus is its exceptional affinity for oxygen. The P=O bond, with its bond energy of 575 kJ mol−1, is one of the strongest double bonds in chemistry, and the Wittig reaction is irreversible and is driven forward by the formation of this P=O bond. No need here for the careful control of an equilibrium necessary when making acetals or imines.