علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
Elimination happens when the nucleophile attacks hydrogen instead of carbon
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص384-385
2025-05-28
44
The elimination reaction of t-butyl bromide happens because the nucleophile is basic. that there is some correlation between basicity and nucleophilicity: strong bases are usually good nucleophiles. Being a good nucleophile doesn’t get hydrox ide anywhere in the substitution reaction because it doesn’t appear in the first-order rate equation. But being a good base does get it somewhere in the elimination reaction because hydroxide is involved in the rate-determining step of the elimination, and so it appears in the rate equation. This is the mechanism.
The hydroxide is behaving as a base because it is attacking the hydrogen atom, instead of the carbon atom it would attack in a substitution reaction. The hydrogen atom is not acidic, but proton removal can occur because bromide is a good leaving group. As the hydroxide attacks, the bromide is forced to leave, taking with it the negative charge. Two molecules—t-butyl bromide and hydroxide—are involved in the rate-determining step of the reaction. This means that the concentrations of both appear in the rate equation, which is therefore second-order and this mechanism for elimination is termed E2, for elimination, bimolecular.
rate = k2 [t-BuBr][HO- ]
Now let’s look at another sort of elimination. We can approach it again by thinking about another SN1 substitution reaction, the reverse of the one at the beginning of the chapter: an alcohol is converted into an alkyl halide.
Bromide, the nucleophile, is not involved in the rate-determining step, so we know that the rate of the reaction will be independent of the concentration of Br −. Indeed the first step, to form the cation, will happen just as fast even if there is no bromide at all. But what happens to the carbocation in such a case? To find out, we need to use an acid whose counterion is such a weak nucleophile that it won’t even attack the positive carbon of the carbocation. Here is an example—t-butanol in sulfuric acid doesn’t undergo substitution, but undergoes elimination instead.
The HSO4 − anion is not involved in the rate-determining formation of the carbocation, and is also a very bad nucleophile, so it does not attack the C atom of the carbocation. Neither is it basic, but you can see from the mechanism that it does behave as a base (that is, it removes a proton). It does this only because it is even more feeble as a nucleophile. The rate equation will not involve the concentration of HSO4 −, and the rate-determining step is the same as that in the SN1 reaction—unimolecular loss of water from the protonated t-BuOH. This elimination mechanism is therefore called E1. We will shortly come back to these two mechanisms for elimination, plus a third, but it is worth noting at this stage that the choice between E1 and E2 is not based on the same grounds as the choice between SN1 and SN2: you have just seen both E1 and E2 elimination from a substrate that would only undergo SN1. The difference between the two reactions was the strength of the base, so fi rst we need to answer the question: when does a nucleophile start behaving as a base?
Elimination in carbonyl chemistry We have left detailed discussion of the formation of alkenes until this chapter, but we used the term ‘elimination’ in Chapters 10 and 11 to describe the loss of a leaving group from a tetrahedral intermediate. For example, the final steps of acid-catalysed ester hydrolysis involve E1 elimination of ROH to leave a double bond: C=O rather than C=C.