النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Approach to Identification for Listeria, Corynebacterium, and Similar Organisms
المؤلف:
Patricia M. Tille, PhD, MLS(ASCP)
المصدر:
Bailey & Scotts Diagnostic Microbiology
الجزء والصفحة:
13th Edition , p280-286
2025-06-24
40
Except for L. monocytogenes and a few Corynebacterium spp., identification of the organisms in this chapter generally is complex and problematic. A multiphasic approach is required for definitive identification. This often requires biochemical testing, whole-cell fatty acid analysis, cell wall diamino acid analysis, or 16S rRNA gene sequencing. The last three methods are usually not available in routine clinical laboratories, so identification of isolates requires expertise available in reference laboratories. Further complicating the situation is the fact that coryneforms are present as normal flora throughout the body. Thus, only clinically relevant isolates should be identified fully. Indicators of clinical relevance include (1) isolation from normally sterile sites or multiple blood culture bottles; (2) isolation in pure culture or as the predominant organism from symptomatic patients who have not yielded any other known etiologic agent; and (3) isolation from urine if present as a pure culture at greater than 10,000 colony-forming units per milliliter (CFU/ mL) or the predominant organism at greater than 100,000 CFU/mL. Coryneforms are more likely to be the cause of a urinary tract infection if the pH of the urine is alkaline or if struvite crystals composed of phosphate, magnesium, and ammonia are present in the sediment.
The API Coryne strip (bioMérieux, St. Louis, Missouri) and the RapID CB Plus (Remel, Lenexa, Kansas) are commercial products available for rapid identification of this group of organisms; however, the databases may not be current with recent taxonomic changes. Therefore, misidentifications can occur if the code generated using these kits is the exclusive criterion used for identification.
Molecular methods for the identification of C. diphtheriae, including ribotyping, pulsed- field gel electrophoresis, and multilocus sequence typing, have been demonstrated to be more sensitive and effective for identification during an outbreak. Various polymerase chain reaction (PCR) techniques have been developed for the quantitative detection of L. monocytogenes in food products. L. monocytogenes DNA in cerebrospinal fluid (CSF) and tissue (fresh or paraffin blocks) can be detected by molecular assays, although these are not available in most clinical laboratories.
Table 1 shows the key tests needed to separate the genera discussed in this chapter. In addition to the features shown, the Gram stain and colonial morphology should be carefully noted.
Table1. Catalase-Positive, Non–Acid-Fast, Gram-Positive Rodsa
Table1. Catalase-Positive, Non–Acid-Fast, Gram-Positive Rods—cont’d
Comments on Specific Organisms
Two tests (halo on Tinsdale agar and urea hydrolysis) can be used to separate C. diphtheriae from other corynebacteria. Definitive identification of a C. diphtheriae as a true pathogen requires demonstration of toxin production by the isolate in question. A patient may be infected with several strains at once, so testing is performed using a pooled inoculum of at least 10 colonies. Several toxin detection methods are available:
• Guinea pig lethality test to ascertain whether diphtheria antitoxin neutralizes the lethal effect of a cell-free suspension of the suspect organism
• Immunodiffusion test originally described by Elek (Figure 1)
• Tissue culture cell test to demonstrate toxicity of a cell-free suspension of the suspect organism in tissue culture cells and the neutralization of the cytopathic effect by diphtheria antitoxin
• PCR to detect the toxin gene
Fig1. Diagram of an Elek plate for demonstration of toxin production by Corynebacterium diphtheriae. A filter paper strip impregnated with diphtheria antitoxin is buried just beneath the surface of a special agar plate before the agar hardens. Strains to be tested and known positive and negative toxigenic strains are streaked on the agar’s surface in a line across the plate and at a right angle to the antitoxin paper strip. After 24 hours of incubation at 37°C, the plates are examined with transmitted light for the presence of fine precipitin lines at a 45-degree angle to the streaks. The presence of precipitin lines indicates that the strain produced toxin that reacted with the homologous antitoxin. Line 1 is the negative control. Line 2 is the positive control. Line 3 is an unknown organism that is a nontoxigenic strain. Line 4 is an unknown organism that is a toxigenic strain.
Because the incidence of diphtheria in the United States is so low (fewer than 5 cases/year), it is not practical to perform these tests in routine clinical laboratories. Toxin testing is usually performed in reference laboratories.
Identification criteria for Corynebacterium spp. (including C. diphtheriae) are shown in Tables 2 through 6. Most clinically relevant strains are catalase positive, nonmotile, nonpigmented, and esculin and gelatin negative. Therefore, isolation of an organism failing to demonstrate any of these characteristics provides a significant clue that another genus shown in Table 1 should be considered. In addition, an irregular, gram-positive rod isolate that is strictly aerobic, nonlipophilic and oxidizes or does not utilize glucose, will likely be Leifsonia aquatica, or Arthrobacter, Brevibacterium, or Microbacterium spp.
Table2. Fermentative, Nonlipophilic, Tinsdale-Positive Corynebacterium spp.*
Table3. Fermentative, Nonlipophilic, Tinsdale-Negative Clinically Relevant Corynebacterium spp.*
Table4. Strictly Aerobic, Nonlipophilic, Nonfermentative, Clinically Relevant Corynebacterium spp.a,b
Table5. Strictly Aerobic, Lipophilic, Nonfermentative, Clinically Relevant Corynebacterium spp.*
Table6. Lipophilic, Fermentative, Clinically Relevant Corynebacterium spp.*
The enhancement of growth by lipids (e.g., Tween 80 or serum) of certain coryneform bacteria (e.g., C. jeikeium and C. urealyticum) is useful for preliminary identification. These two species are also resistant to several antibiotics commonly tested against gram-positive bacteria.
L. monocytogenes can be presumptively identified by observation of motility by direct wet mount. The organ ism exhibits characteristic end-over-end tumbling motility when incubated in nutrient broth at room temperature for 1 to 2 hours. Alternatively, characteristic motility can be seen by an umbrella-shaped pattern (Figure 2) that develops after overnight incubation at room temperature of a culture stabbed into a tube of semisolid agar. L. monocytogenes ferments glucose and is Voges-Proskauer positive and esculin positive. Isolation of a small, gram positive, catalase-positive rod with a narrow zone of beta hemolysis from blood or CSF should be considered strong presumptive evidence for listeriosis. L. monocytogenes can be differentiated from other Listeria spp. by a positive result on the Christie, Atkins, Munch-Petersen (CAMP) test, as described in Chapter 15 for the identification of Streptococcus agalactiae. A reverse CAMP reaction (i.e., an arrow of no hemolysis formed at the junction of the test organism with the staphylococci) is used to identify C. pseudotuberculosis and C. ulcerans. C. urealyticum is rapidly urea positive.
Fig2. Umbrella motility of Listeria monocytogenes grown at room temperature
الاكثر قراءة في البكتيريا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
