النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Protein Modifications
المؤلف:
Hoffman, R., Benz, E. J., Silberstein, L. E., Heslop, H., Weitz, J., & Salama, M. E.
المصدر:
Hematology : Basic Principles and Practice
الجزء والصفحة:
8th E , P46-47
2025-06-30
40
Modifications of the polypeptide chains introduce new functional groups to proteins and extend the repertoire of the standard amino acid residues. More than a hundred modifications have been identified, and modifications occur during (cotranslationally) or after syn thesis of the polypeptide (posttranslationally). Most of the reversible modifications are carried out by enzymes that catalyze the transfer of a chemical group from a donor molecule to the target amino acid. In contrast, proteolytic cleavage of precursor proteins to generate mature products is generally irreversible. The most common protein modifications include acetylation, methylation, myristoylation, prenylation, phosphorylation, sulfation, γ-carboxylation, ubiquitination, sumoylation, and proteolysis. Protein modifications are critical in numerous physiologic processes and central to inherited and acquired diseases. Histone proteins undergo posttranslational modifications (PTMs), such as methylation, acetylation, and others, that modulate the epigenetic code. Here are some features of the most common protein modifications:
• Acetylation: approximately 80% to 90% of human proteins are cotranslationally, irreversibly N-acetylated (acetyl group: COCH3 ). Ribosome-associated Met-aminopeptidases and acetylases cotranslationally cleave off the Nt methionine and acetylate the second residue, respectively. Consequences of Nt-acetylation are manifold, ranging from determining subcellular localization, to regulating protein-protein interactions, to protein folding and other functions. Reversible acetylation can occur posttranslationally on the ε-amino group of lysines, abolishing its positive charge. Besides phosphorylation, lysine acetylation is perhaps the most abundant and important PTM in cell signaling and metabolism.[1]
• Methylation: is the reversible addition of a methyl group (CH3 ) to lysine or arginine residues. This modification increases the hydrophobicity of the protein-altering protein-protein interactions. Protein arginine methylases are explored as therapeutic tar gets in leukemia and other hematologic malignancies.[2,3]
• Phosphorylation: introduces a charged and hydrophilic phosphate group in the side chains of serine, threonine, or tyrosine with a ratio of occurrence of 1000:100:1 and represents a flexible mechanism for cells to respond to external signals and environmental conditions. Phosphorylation is reversed by the action of protein phosphatases that remove the phosphate group. It has been estimated that the human genome encodes approximately 500 protein kinases and 100 protein phosphatases. The catalytic or biologic activity of many enzymes is transiently regulated by reversible phosphorylation (e.g., switched “on” or “off” by phosphorylation or dephosphorylation, respectively). There are several prominent examples of mutations in tyrosine kinases or their involvement in translocations that result in loss of response and regulation in hematologic diseases, such as mutations in FLT3 in myeloid leukemia, in JAK2 in polycythemia vera, and translocations involving the ABL tyrosine kinase in t(9;22) in chronic myeloid leukemia. All result in constitutive activation providing proliferative and survival advantage to malignant clones.
• Sulfation: this modification occurs at tyrosine residues and is catalyzed by tyrosyl-protein sulfotransferases (TPSTs), which are membrane-associated enzymes of the trans-Golgi network. An unusual nucleotide, a 3′-phosphoadenosine 5′-phosphosulfate (PAPS), is the universal sulfate donor for TPST-catalyzed reactions. Addition of sulfate occurs almost exclusively on secreted or membrane proteins and is believed to play a role in the modulation of protein-protein interactions. Sulfation is critical in blood coagulation (coagulation factors V and VIII), various immune functions, intracellular trafficking, and ligand recognition by several G protein–coupled receptors.
• γ-Carboxylation: vitamin K is an essential cofactor for the enzyme γ-glutamyl carboxylase (GGCX) that converts glutamate into γ-carboxyglutamate in numerous factors of the clotting cascade, specifically factors II, VII, IX, and X. γ-Glutamyl carboxylation introduces affinity for calcium ions, and its role in coagulation is described in more detail in Box 1.
Box1. Protein γ-Carboxylation: A Rare Posttranslational Modification Crucial for Life
• Ubiquitination: the role of ubiquitination is manifold. It marks proteins for degradation (explained in detail later) and alters their function, their location, and protein-protein interaction. Ubiquitination is achieved by three main steps involving ubiquitin activating and conjugating enzymes, and ubiquitin ligases. Single (monoubiquitination) or multiple (polyubiquitination) ubiquitins can be attached to lysines in target proteins with differing consequences.
• Sumoylation: small ubiquitin-related modifier (SUMO) proteins are similar to ubiquitin and hence called ubiquitin-like (Ubl). The small peptide SUMO is among the best characterized Ubl, and more than 50 proteins are modified by SUMO addition.
Additional modifications form anchors for membrane association. Among the most important of these modifications are:
• Myristoylation: irreversible attachment of a 14-carbon myristoyl group to the Nt glycine residue of a protein allows association of the target protein with membranes, other proteins, or lipids.
• Prenylation: involves attachment of the 15-carbon farnesyl group or 20-carbon geranyl group to acceptor proteins that harbor a CAAX consensus sequence (C = cysteine, AA = any aliphatic amino acid except alanine, X = any amino acid) at the C-terminus. Examples of prenylation occur on RAS and RAB protein family members and control their intracellular membrane traffic (see later). Lack of prenylation generates severe phenotypes.
The aforementioned modifications are in general reversible, whereas proteolysis is generally considered an irreversible PTM:
• Proteolysis: results in cleavage of the polypeptide chain at a specific site during its maturation (proinsulin to insulin) or occurs upon secretion of the polypeptide’s inactive form (zymogen). The need for and specific timing of proteolysis prevent unwanted toxic effects of the processed protein in the cell, as is the case for digestive proteases, or direct activation of proteins to specific sites and contexts, as is the case for activation of coagulation factors at sites of damaged blood vessels. Proteolytic processing of pro polypeptides into their mature forms occurs after the Arg-Xxx Lys-Arg motif and is mediated by the protease FURIN. FURIN is ubiquitous and activates clotting factors, growth factors, and other proteases. Other members of the proprotein convertase (PC) family cleave after pairs of dibasic amino acids (e.g., Lys-Arg) and are expressed in specific cell types, such as neuroendocrine cells.
Additional enzymatic modifications (N-glycosylation, O-glycosylation, and attachment of a glycosylphosphatidylinositol [GPI] anchor) are dis cussed later and in Box 1.
In addition to enzymatic reactions, proteins can also undergo nonenzymatic modifications, such as during oxidative stress or in the presence of excess glucose in the blood, as in the case of hemoglobin glycation.
References
--------------
[1] Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim Biophys Acta. 2016;1864(10):1372–1401.
[2] Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol. 2019;20(10):642–657.
[3] Fong JY, Pignata L, Goy PA, et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell. 2019;36(2):194–209. e199.
الاكثر قراءة في مواضيع عامة في الاحياء الجزيئي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
