1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الهندسة : مواضيع عامة في الهندسة :

Conic Sections

المؤلف:  Jacobs, Harold R

المصدر:  Mathematics, A Human Endeavor

الجزء والصفحة:  ...

7-1-2016

3197

Imagine there are two cone-shaped paper drinking cups, each fastened to the other at its point, or vertex. The figure that would result is described mathematically as a right circular cone (sometimes called a double cone), which is formed by a straight line that moves around the circumference of a circle while passing through a fixed point (the vertex) that is not in the plane of the circle.

If a right circular cone is cut, or intersected, by a plane at different locations, the intersections form a family of plane curves called  conic sections (see the figure). If the intersecting plane is parallel to the base of the cone, the intersection is a circle—which shrinks to a point when the plane has moved toward the cone’s tip and finally passes through the vertex. If the intersecting plane is not parallel to the base, passes through only one half of the cone, and is not parallel to the side of the cone, then the intersection is an ellipse. If the plane intersects both halves of the cone, and is not par-

allel to the side of the cone, then the intersection is a curve that has two branches, called a hyperbola. If the plane intersects the cone so that the plane is parallel to the side of the cone, then the intersection is a curve called a parabola. The equations for the conic section curves can have the general forms summarized in the table.

These conic section curves—the circle, ellipse, hyperbola, and parabola—have been known and named for more than 2,000 years, and they occur in many applications. The path of a thrown ball, the arc of cables that support a bridge, and the arc of a fountain are examples of parabolas. The shape of a sonic boom, the path of comets, and the LORAN navigation system for ships involve the hyperbola. The paths traveled by the planets, domeshaped ceilings, and the location of the listening points in a whispering gallery involve the ellipse. Of course, examples of the most familiar conic section—the circle—can be found everywhere: the shape of flowers, ripples in a pool, and water-worn stones.

______________________________________________________________________________________________

Reference

Jacobs, Harold R. Mathematics, A Human Endeavor. San Francisco: W.H. Freeman and Company, 1970.

EN

تصفح الموقع بالشكل العمودي