1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : الفيزياء الكلاسيكية : علم البصريات : مواضيع عامة في علم البصريات :

SPONTANEOUS EMISSION AND LEVEL LIFETIME

المؤلف:  Mark Csele

المصدر:  FUNDAMENTALS OF LIGHT SOURCES AND LASERS

الجزء والصفحة:  p34

8-3-2016

2710

SPONTANEOUS EMISSION AND LEVEL LIFETIME

An atom at an excited state will eventually drop to a lower level and in doing so will emit a photon of radiation in a process called spontaneous emission. Excited electrons will not stay at the excited level forever since nature favors a low energy level and so will emit the photon spontaneously after an average time of τsp called the spontaneous lifetime of the level. This time depends on the atomic species involved and can be measured for a given species; some levels have long lifetimes measured in seconds, whereas others are relatively short, on the order of nanoseconds or less. This lifetime determines the ability of the emitting atom to store energy and will affect the efficiency of sources. In lasers, it also factors prominently in determining the probability that laser action can be coaxed from a particular atomic species. Consider Figure 1.1, in which two atoms with different spontaneous lifetimes are excited at a start time t =0. The top atom, with a relatively short lifetime, emits a

Figure 1.1. Spontaneous lifetime.

photon spontaneously at a time t = τ1, while the second atom, with a longer lifetime, waits until an elapsed time of t = τ2 before emitting a photon. Radiation is not always emitted from a transition. An electron can lose energy by colliding with tube walls. Such non-radiative events are rare, though, in a gas at low pressure (such as that in a discharge tube or neon sign), so we shall not discuss them here. This non-radiative mechanism is important, however, as it is used to depopulate certain energy levels in lasers (including the common helium neon laser) and so will be dealt. In addition to losing energy in collisions (primarily in a gas, where atoms are treated essentially as independent entities), electrons that are trapped in a crystal lattice can lose energy by causing vibrations in the crystal. A vibration resulting from a transition, called a phonon, produces heat in the crystal and occurs commonly in semiconductor materials.

EN

تصفح الموقع بالشكل العمودي