تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
APPLICATIONS AND PRACTICAL UNITS
المؤلف:
Mark Csele
المصدر:
FUNDAMENTALS OF LIGHT SOURCES AND LASERS
الجزء والصفحة:
p269
24-3-2016
1292
APPLICATIONS AND PRACTICAL UNITS
Given their intense UV output and short pulse length, nitrogen lasers make excellent pump sources for pumping dye lasers . The 337.1-nm UV emission is absorbed readily by many laser dyes, and in this application the wide spectral bandwidth and poor coherence of the laser beam are unimportant. In addition, the short pulse length does not allow triplet production in the dye, so the conversion efficiency of the laser-pumped dye laser is very high. Nitrogen lasers are also useful for exciting fluorescence in substances other than laser dyes, allowing studies of these molecules. As an excitation source, the molecules are commonly used to produce ions for time-of-flight spectroscopy. In the MALDI (matrix-assisted laser desorption/ionization) technique, the laser vaporizes and ionizes nonvolatile biological samples, which are then analyzed by a time-of-flight mass spectrometer and detected based on their mass-to-charge ratio. Nitrogen lasers may also be used for small microcutting procedures on individual biological cells or for trimming thin films for the semiconductor industry. With a typical pulse energy of less than 1 mJ and a repetition rate under 100 Hz, nitrogen lasers yield a low-cost source of intense UV light.
A few commercial manufacturers of nitrogen lasers build both low-pressure and TEA variants. Many manufacturers of nitrogen lasers also offer matching dye lasers designed to be mated with the same brand of nitrogen pump laser to form a compact package. As well as a laser designed exclusively to operate as a nitrogen laser, many excimer lasers can also use nitrogen gas, although this is an expensive option for obtaining UV at 337.1 nm since excimer lasers are considerably more expensive. Since an excimer laser operating as a nitrogen laser operates in TEA mode with pressures averaging over 2 atm, measures must be taken to ensure that the discharge does not occur in localized hot spots along the long transverse electrodes. Aside from preionization employed in all excimers, the gas mixture also consists of a small amount of nitrogen diluted in helium. One popular manufacturer of excimer lasers specifies a gas mixture for use as a nitrogen laser (N2 at 337.1 nm), consisting of 2% nitrogen and 98% helium. To lase the N+2 species at 428 nm, the same manufacturer specifies a mixture consisting of only 0.2% nitrogen, with the balance helium.
Owing to the simple mechanism of this laser, many are constructed in-house by both amateur laser constructors and commercial laboratories. Low-pressure lasers can be constructed easily using thin printed-circuit board for capacitors and a laser channel manufactured from acrylic plastic or glass. TEA types are constructed using lower-inductance materials (and hence faster discharge times), using capacitors fabricated from thin polyethylene or Mylar sheets and foil electrodes.