1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : المثلثات :

Radian and degree measures of angles

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  www.almerja.com

الجزء والصفحة:  ...

9-2-2017

1623

Radian and degree measures of angles

Degree and radian measures of angles. 
Relation of a circle radius and a circumference 
length. Table of degree and radian measures 
for some most used angles.

degree measure. Here a unit of measurement is a degree (its designation is ° or  deg – a turn of a ray by the  1 / 360   part of the one complete revolution. So, the complete revolution of a ray is equal to 360 deg. One degree is divided into 60 minutes (a designation is ‘ or  min); one minute – correspondingly into  60 seconds (a designation is “ or  sec).

A radian measure. As we know from plane geometry ( see the point "A length of arc" of the paragraph "Geometric locus. Circle and circumference"), a length of an arc l , a radius  r and a corresponding central angle α are tied by the relation:

α = l / r .

This formula is a base for definition of a radian measure of angles. So,  if  l = r , then α = 1, and we say, that an angle  α is equal to1 radian, that is designed as α = 1 rad.  Thus, we have the following definition of a radian measure unit:

A radian is a central angle, for which lengths of  its arc and radius are equal ( AmB = AO, Fig.1 ). So, a radian measure of any angle is a ratio of a length of an arc drawn by an arbitrary radius and concluded between sides of this angle to the arc radius.

Following this formula, a length of a circumference    and its radius   can be expressed as:

2 α =  C / r .

Soa round angle, equal to 360° in a degree measure, is simultaneously  2α in a radian measure. Hence, we receive a value of one radian:

Inversely,

It is useful to remember the following comparative table of degree and radian measure for some angles, we often deal with:

 

EN

تصفح الموقع بالشكل العمودي