1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : علماء الرياضيات : 1860to1864 :

Corrado Segre

المؤلف:  P Speziali

المصدر:  Biography in Dictionary of Scientific Biography

الجزء والصفحة:  ...

17-3-2017

287

Born: 20 August 1863 in Saluzzo, Italy

Died: 18 May 1924 in Turin, Italy


Corrado Segre studied at Turin under Enrico D'Ovidio. Gino Loria, who was to write famous texts on the history of mathematics, was a fellow student of Segre's and they remained friends throughout their lives. In 1883 Segre was awarded his doctorate for a thesis on quadrics in higher dimensional spaces and was appointed as an assistant to the professor of algebra and to the professor of geometry at Turin. In 1885 he was appointed as assistant in descriptive geometry.

In 1888 Segre succeeded D'Ovidio to the chair of higher geometry in Turin and he continued to hold this post for the next 36 years until his death.

Plücker's ideas on the geometry of ruled surfaces had been extended by Klein, and D'Ovidio lectured on this topic in session 1881-82. D'Ovidio also included in these lectures results of Veronese on projective geometry and of Weierstrass on bilinear and quadratic forms. This must have been a truly inspiring lecture course by D'Ovidio since it set the scene for all of Segre's research. He spent the rest of his working life on problems which arose directly or indirectly from this lecture course.

Before Segre had written his thesis he submitted a joint paper with Loria to Mathematische Annalen. It was published in 1883 but perhaps the most important outcome was that the paper greatly interested Klein who then began to correspond with Segre, a correspondence which was to continue over many years.

Segre worked on geometric properties invariant under linear transformations, algebraic curves and ruled surfaces studying transformations already considered by Brill, Clebsch, Gordan and Max Noether. In [1] P Speziale says that through this work of Segre's:-

... it thus became possible to reduce the classification of surfaces to that of curves. The insufficiencies of the earlier theories proposed by A Möbius, Grassmann, Cayley and Cremona were thus soon revealed.

Using the methods which he had introduced, Segre was able to study Kummer's surface in a much simpler way. This surface, which had been discovered by Kummer in 1864, is a fourth order surface with sixteen double points. In a paper published in 1896, Segre found an invariant of surfaces under birational transformations which had appeared in a different form in a 1871 article by Zeuthen: this invariant is now called the Zeuthen-Segre invariant.

In 1890 Segre looked at properties of the Riemann sphere and was led to a new area of representing complex points in geometry. He introduced bicomplex points into geometry. Motivated by the works of von Staudt, Segre considered a different type of complex geometry in 1912.

Among other important work which Segre produced was an extension of ideas of Darboux on surfaces defined by certain differential equations.

In [1] his clarity of writing is mentioned and illustrated with these comments:-

Segre wrote a long article on hyperspaces for the Encyklopädie der mathematischen Wissenschaften, containing all that was then known about such spaces. A model article, it is notable for its clarity and elegance.

Finally we quote the summary of Segre's importance as described in the [1] article:-

Through his teaching and publications, Segre played an important role in reviving an interest in geometry in Italy. His reputation and the new ideas he presented in his courses attracted many Italian and foreign students to Turin. Segre's contribution to the knowledge of space assures him a place after Cremona in the ranks of the most illustrious members of the new Italian school of geometry.


 

  1. P Speziali, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903951.html

Articles:

  1. G Castelnuovo, Corrado Segre, Atti dell'Accademia nazionale dei Lincei. Rendiconti 33 (1924), 353-359.
  2. P Gario, Histoire de la résolution des singularités des surfaces algébriques (une discussion entre C Segre et P del Pezzo), Cahiers du séminaire d'histoire des mathématiques 9 (Paris, 1988), 123-137.
  3. P Gario, Resolution of singularities of surfaces by P Del Pezzo: A mathematical controversy with C Segre, Archive for History of Exact Science 40 (3) (1989), 247-274.
  4. P Gario, Some recently discovered letters of Corrado Segre (Italian), Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 123 (5-6) (1990), 187-198.
  5. P Gario, Singularities and geometry of surfaces in C Segre's correspondence with G Castelnuovo (Italian), Archive for History of Exact Science 43 (2) (1991), 145-188.
  6. F Ghione and G Ottaviani, A tribute to Corrado Segre, Complex projective geometry, London Math. Soc. Lecture Note Ser. 179 (Cambridge, 1992), 175-188.
  7. A Terracini, I quaderni di Corrado Segre, Atti del Quarto Congresso dell'Unione Matematica Italiana (Roma, 1953), 252-262.

 

EN

تصفح الموقع بالشكل العمودي