المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

وفاة الواثق وبيعة المتوكل
22-9-2017
الأحاديث الواردة حول نقصان سورة الأحزاب في كتب السنّة
27-11-2014
كمية التحرك الزاوي
2-2-2016
ترجمة المقري من نيل الابتهاج
2024-01-07
Reflection: On indeterminacy
6-5-2022
إبراهيم بن محمد بن زكريا
9-04-2015

Haar Measure  
  
706   05:37 مساءً   date: 24-5-2018
Author : Conway
Book or Source : J. A Course in Functional Analysis. New York: Springer-Verlag, 1990.
Page and Part : ...


Read More
Date: 22-5-2018 718
Date: 11-6-2018 2111
Date: 23-12-2018 837

Haar Measure

Any locally compact Hausdorff topological group has a unique (up to scalars) nonzero left invariant measure which is finite on compact sets. If the group is Abelian or compact, then this measure is also right invariant and is known as the Haar measure.

More formally, let G be a locally compact group. Then a left invariant Haar measure on G is a Borel measure mu satisfying the following conditions:

1. mu(xE)=mu(E) for every x in G and every measurable E subset= G.

2. mu(U)>0 for every nonempty open set U subset= G.

3. mu(K)<infty for every compact set K subset= G.

For example, the Lebesgue measure is an invariant Haar measure on real numbers.

In addition, if G is an (algebraic) group, then G with the discrete topology is a locally compact group. A left invariant Haar measure on G is the counting measure on G.


REFERENCES:

Conway, J. A Course in Functional Analysis. New York: Springer-Verlag, 1990.

Feldman M. and Gilles, C. "An Expository Note on Individual Risk Without Aggregate Uncertainty." J. Econ. Theory 35, 26-32, 1985.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.