المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
دراسة تسلسل الDNA sequencing) DNA)
2025-01-13
قواعد في الإدارة / تقديم المنجزات الهامة
2025-01-13
قواعد الاهتمام بالبشر / حسن المعاشرة
2025-01-13
مبادئ رعاية الطفل
2025-01-13
الامراض والآفات التي تصيب الفول الرومي
2025-01-13
عندما يسيء طفلك التصرف ولا يستطيع البكاء: بناء حس الأمان
2025-01-13

Folate Antagonists
23-3-2016
تنظيم عمل النساء
22-2-2017
Local Class Field Theory
17-10-2019
تقارير حديثة عن ألغاز زحل
8-3-2022
حركة البندول
2024-01-04
الأجسام هل تدرك ذواتها أو أعراضها أو هما معا ؟
1-07-2015

Repeated Integral  
  
1279   01:57 مساءً   date: 25-8-2018
Author : Samko, S. G.; Kilbas, A. A.; and Marichev, O. I.
Book or Source : Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach
Page and Part : ...


Read More
Date: 19-9-2019 1486
Date: 18-8-2018 2847
Date: 25-7-2019 4924

Repeated Integral

 

A repeated integral is an integral taken multiple times over a single variable (as distinguished from a multiple integral, which consists of a number of integrals taken with respect to different variables). The first fundamental theorem of calculus states that if F(x)=D^(-1)f(x) is the integral of f(x), then

 int_0^xf(t)dt=F(x)-F(0).

(1)

Now, if F(0)=0, then

 F(x)=intf(x)dx=int_0^xf(t)dt.

(2)

It follows by induction that if F(0)=F(F(0))=...=0, then the n-fold integral of f(x) is given by

D^(-n)f(x) = int...int_0^x_()_(n)f(x)dx...dx_()_(n)

(3)

= int_0^x(f(t)(x-t)^(n-1))/((n-1)!)dt.

(4)

Similarly, if F(x_0)=F(F(x_0))=...=0, then

 int...int_(x_0)^x_()_(n)f(x)dx...dx_()_(n)=int_(x_0)^x(f(t)(x-t)^(n-1))/((n-1)!)dt.

(5)

 


REFERENCES:

Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, p. 33, 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.