Read More
Date: 30-3-2019
1528
Date: 21-8-2019
1682
Date: 16-8-2019
1017
|
The invariants of a Weierstrass elliptic function are defined by the Eisenstein series
(1) |
|||
(2) |
Here,
(3) |
where and are the half-periods of the elliptic function. The Wolfram Language command WeierstrassInvariants[omega1, omega2] gives the invariants and corresponding to the half-periods and .
Writing ,
(4) |
|||
(5) |
and the invariants have the Fourier series
(6) |
|||
(7) |
where is the half-period ratio and is the divisor function (Apostol 1997).
REFERENCES:
Apostol, T. M. "The Fourier Expansions of and ." §1.9 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 12-13, 1997.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
مركز الثقافة الأسرية يُنظّم برنامجًا ثقافيًّا لطالبات المدارس الدينية
|
|
|