Read More
Date: 3-6-2019
![]()
Date: 11-6-2019
![]()
Date: 29-6-2019
![]() |
The invariants of a Weierstrass elliptic function are defined by the Eisenstein series
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
Here,
![]() |
(3) |
where and
are the half-periods of the elliptic function. The Wolfram Language command WeierstrassInvariants[
omega1, omega2
] gives the invariants
and
corresponding to the half-periods
and
.
Writing ,
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
and the invariants have the Fourier series
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
where is the half-period ratio and
is the divisor function (Apostol 1997).
REFERENCES:
Apostol, T. M. "The Fourier Expansions of and
." §1.9 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 12-13, 1997.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
سماحة السيد الصافي يؤكد ضرورة تعريف المجتمعات بأهمية مبادئ أهل البيت (عليهم السلام) في إيجاد حلول للمشاكل الاجتماعية
|
|
|