Read More
Date: 25-4-2018
2175
Date: 25-3-2019
1732
Date: 25-5-2019
1482
|
Let the elliptic modulus satisfy , and the Jacobi amplitude be given by with . The incomplete elliptic integral of the first kind is then defined as
(1) |
The elliptic integral of the first kind is implemented in the Wolfram Language as EllipticF[phi, m] (note the use of the parameter instead of the modulus ).
Letting
(2) |
|||
(3) |
|||
(4) |
Equation (1) can be written as
(5) |
|||
(6) |
Letting
(7) |
|||
(8) |
then the integral can also be written as
(9) |
where is the complementary elliptic modulus.
The inverse function of is given by the Jacobi amplitude
(10) |
The integral
(11) |
which arises in computing the period of a pendulum, is also an elliptic integral of the first kind. Use
(12) |
|||
(13) |
to write
(14) |
|||
(15) |
|||
(16) |
so
(17) |
Now let
(18) |
so the angle is transformed to
(19) |
which ranges from 0 to as varies from 0 to . Taking the differential gives
(20) |
or
(21) |
Plugging this in gives
(22) |
|||
(23) |
|||
(24) |
so
(25) |
|||
(26) |
Making the slightly different substitution , so leads to an equivalent, but more complicated expression involving an incomplete elliptic integral of the first kind,
(27) |
|||
(28) |
Therefore, the identity
(29) |
holds over at least some region of the complex plane. The region of applicability is , which is shown above.
The elliptic integral of the first kind satisfies
(30) |
Special values of include
(31) |
|||
(32) |
where is known as the complete elliptic integral of the first kind.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Elliptic Integrals." Ch. 17 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 587-607, 1972.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Spanier, J. and Oldham, K. B. "The Complete Elliptic Integrals and " and "The Incomplete Elliptic Integrals and ." Chs. 61-62 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 609-633, 1987.
Tölke, F. "Parameterfunktionen." Ch. 3 in Praktische Funktionenlehre, zweiter Band: Theta-Funktionen und spezielle Weierstraßsche Funktionen. Berlin: Springer-Verlag, pp. 83-115, 1966.
Tölke, F. "Umkehrfunktionen der Jacobischen elliptischen Funktionen und elliptische Normalintegrale erster Gattung. Elliptische Amplitudenfunktionen sowie Legendresche F- und E-Funktion. Elliptische Normalintegrale zweiter Gattung. Jacobische Zeta- und Heumansche Lambda-Funktionen," and "Normalintegrale dritter Gattung. Legendresche -Funktion. Zurückführung des allgemeinen elliptischen Integrals auf Normalintegrale erster, zweiter, und dritter Gattung." Chs. 6-7 in Praktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 58-144, 1967.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 122, 1997.
|
|
هل تعرف كيف يؤثر الطقس على ضغط إطارات سيارتك؟ إليك الإجابة
|
|
|
|
|
معهد القرآن الكريم النسوي يقدم خدماته لزائري الإمام الكاظم (عليه السلام)
|
|
|