Bohr-Mollerup Theorem
المؤلف:
Havil, J.
المصدر:
Gamma: Exploring Euler,s Constant. Princeton, NJ: Princeton University Press
الجزء والصفحة:
...
21-5-2019
2186
Bohr-Mollerup Theorem
If a function
satisfies
1.
is convex,
2.
for all
, and
3.
,
then
is the gamma function
. Therefore, by analytic continuation,
is the only meromorphic function on
satisfying the functional equation
with
and which is logarithmically convex on the positive real axis.
REFERENCES:
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 56-57, 2003.
Krantz, S. G. "The Bohr-Mollerup Theorem." §13.1.10 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 157, 1999.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة