 
					
					
						Hyperbolic Cosecant					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						"Hyperbolic Functions." §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
						 المصدر:  
						"Hyperbolic Functions." §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 3-6-2019
						3-6-2019
					
					
						 1662
						1662					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Hyperbolic Cosecant



The hyperbolic cosecant is defined as
	
		
			|  | (1) | 
	
It is implemented in the Wolfram Language as Csch[z].
It is related to the hyperbolic cotangent though
	
		
			|  | (2) | 
	
The derivative is given by
	
		
			|  | (3) | 
	
where  is the hyperbolic cotangent, and the indefinite integral by
 is the hyperbolic cotangent, and the indefinite integral by
	
		
			| ![intcschzdz=ln[sinh(1/2z)]-ln[cosh(1/2z)]+C,](http://mathworld.wolfram.com/images/equations/HyperbolicCosecant/NumberedEquation4.gif) | (4) | 
	
where  is a constant of integration.
 is a constant of integration.
It has Taylor series
(OEIS A036280 and A036281), where  is a Bernoulli polynomial and
 is a Bernoulli polynomial and  is a Bernoulli number.
 is a Bernoulli number.
Sums include
(OEIS A110191; Berndt 1977).

The plot above shows a bifurcation diagram for  .
.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Hyperbolic Functions." §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 83-86, 1972.
Berndt, B. C. "Modular Transformations and Generalizations of Several Formulae of Ramanujan." Rocky Mtn. J. Math. 7, 147-189, 1977.
Jeffrey, A. "Hyperbolic Identities." §2.5 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 117-122, 2000.
Sloane, N. J. A. Sequences A036280, A036281, and A110191 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Hyperbolic Secant  and Cosecant
 and Cosecant  Functions." Ch. 29 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 273-278, 1987.
 Functions." Ch. 29 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 273-278, 1987.
Zwillinger, D. (Ed.). "Hyperbolic Functions." §6.7 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 476-481 1995.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة