تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Closed Form
المؤلف:
Klein, C. F
المصدر:
"Weitere Untersuchungen Über Das Ikosaeder," Mathematische Annalen 12
الجزء والصفحة:
...
20-6-2019
1597
Closed Form
A discrete function is called closed form (or sometimes "hypergeometric") in two variables if the ratios
and
are both rational functions. A pair of closed form functions
is said to be a Wilf-Zeilberger pair if
![]() |
The term "hypergeometric function" is less commonly used to mean "closed form," and "hypergeometric series" is sometimes used to mean hypergeometric function.
A differential k-form is said to be a closed form if
.
It is worth noting that the adjective "closed" is used to describe a number of mathematical notions, e.g., the notion of closed-form solution. Loosely speaking, a solution to an equation is said to be a closed-form solution if it solves the given problem and does so in terms of functions and mathematical operations from a given generally-accepted set of "elementary notions." This particular notion of closed-form is completely separate from the notions of closedness as discussed above: In particular, the hypergeometric function (and hence, any closed-form function inheriting its properties) is considered a "special function" and is not expressible in terms of operations which are typically viewed as "elementary." What's more, certain agreed-upon truths like the insolvability of the quintic fail to be true if one extends consideration to a class of functions which includes the hypergeometric function, a result due to Klein (1877).
REFERENCES:
Klein, C. F. "Weitere Untersuchungen Über Das Ikosaeder," Mathematische Annalen 12, 503-560, 1877.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, p. 141, 1996.
Zeilberger, D. "Closed Form (Pun Intended!)." Contemporary Math. 143, 579-607, 1993.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
