Read More
Date: 11-6-2019
1403
Date: 12-10-2018
1276
Date: 23-4-2019
1548
|
A relation expressing a sum potentially involving binomial coefficients, factorials, rational functions, and power functions in terms of a simple result. Thanks to results by Fasenmyer, Gosper, Zeilberger, Wilf, and Petkovšek, the problem of determining whether a given hypergeometric sum is expressible in simple closed form and, if so, finding the form, is now (subject to a mild restriction) completely solved. The algorithm which does so has been implemented in several computer algebra packages and is calledZeilberger's algorithm.
REFERENCES:
Koepf, W. "Hypergeometric Identities." Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 11-30, 1998.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, p. 18, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|