Power Tower
The power tower of order
is defined as
 |
(1)
|
where
is Knuth up-arrow notation (Knuth 1976), which in turn is defined by
![a^^nk=a^^(n-1)[a^^n(k-1)]](http://mathworld.wolfram.com/images/equations/PowerTower/NumberedEquation2.gif) |
(2)
|
together with
Rucker (1995, p. 74) uses the notation
 |
(5)
|
and refers to this operation as "tetration."
A power tower can be implemented in the Wolfram Language as
PowerTower[a_, k_Integer] := Nest[Power[a, #]&, 1, k]
or
PowerTower[a_, k_Integer] := Power @@ Table[a, {k}]
The following table gives values of
for
, 2, ... for small
.
 |
Sloane |
 |
1 |
A000027 |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... |
2 |
A000312 |
1, 4, 27, 256, 3125, 46656, ... |
3 |
A002488 |
1, 16, 7625597484987, ... |
4 |
|
1, 65536, ... |
The following table gives
for
, 2, ... for small
.
 |
Sloane |
 |
1 |
A000012 |
1, 1, 1, 1, 1, 1, ... |
2 |
A014221 |
2, 4, 16, 65536, , ... |
3 |
A014222 |
3, 27, 7625597484987, ... |
4 |
|
4, 256, , ... |
Consider
and let
be defined as
{1 if n=0; 1/(n!) if m=1; 1/nsum_(j=1)^(n)ja_(m,n-j)a_(m-1,j-1) otherwise " src="http://mathworld.wolfram.com/images/equations/PowerTower/NumberedEquation4.gif" style="height:114px; width:242px" /> |
(6)
|
(Galidakis 2004). Then for
,
is entire with series expansion:
 |
(7)
|
Similarly, for
,
is analytic for
in the domain of the principal branch of
, with series expansion:
 |
(8)
|
For
, and
,
 |
(9)
|
For
, and
, and 
 |
(10)
|
The value of the infinite power tower
, where
is an abbreviation for
, can be computed analytically by writing
 |
(11)
|
taking the logarithm of both sides and plugging back in to obtain
![z^(z^(·^(·^·)))lnz=h(z)lnz=ln[h(z)].](http://mathworld.wolfram.com/images/equations/PowerTower/NumberedEquation10.gif) |
(12)
|
Solving for
gives
 |
(13)
|
where
is the Lambert W-function (Corless et al. 1996).
converges iff
(
; OEIS A073230 and A073229), as shown by Euler (1783) and Eisenstein (1844) (Le Lionnais 1983; Wells 1986, p. 35).
Knoebel (1981) gave the following series for 
(Vardi 1991).
The special value
is given by
(OEIS A077589 and A077590; Macintyre 1966).

The related function
 |
(19)
|
converges only for
, that is,
(OEIS A072364). The value it converges to is the inverse of
which can be found by taking the logarithm of both sides of (19),
 |
(20)
|
rearranging to
 |
(21)
|
and then substituting to obtain
 |
(22)
|
Solving the resulting equation for
then gives the partial solution
 |
(23)
|
which is valid for
(i.e.,
; OEIS A072364 and A073226). Taking
then gives
, where
is the omega constant.
A continued fraction due to Khovanskii (1963) for the single iteration of
is given by
 |
(24)
|


The function
is plotted above along the real line and in the complex plane. It has series expansion
 |
(25)
|
(Trott 2004, p. 59). It has a minimum where
 |
(26)
|
which has solution
. At this point, the function takes on the value
.
The indefinite integral
 |
(27)
|
cannot be expressed in terms of a finite number of elementary functions, but some interesting definite integrals of
are
(OEIS A083648 and A073009; Spiegel 1968; Abramowitz and Stegun 1972; Havil 2003, pp. 44-45; Borwein et al. 2004, p. 5). Borwein et al. (2004, pp. 5 and 44) call these two integrals "a sophomore's dream."



The function
is plotted above along the real line and in the complex plane, where it shows beautiful structure.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
Ash, J. M. "The Limit of
as
Tends to Infinity." Math. Mag. 69, 207-209, 1996.
Baker, I. N. and Rippon, P. J. "Convergence of Infinite Exponentials." Ann. Acad. Sci. Fennicæ Ser. A. I. Math. 8, 179-186, 1983.
Baker, I. N. and Rippon, P. J. "Iteration of Exponential Functions." Ann. Acad. Sci. Fennicæ Ser. A. I. Math. 9, 49-77, 1984.
Baker, I. N. and Rippon, P. J. "A Note on Complex Iteration." Amer. Math. Monthly 92, 501-504, 1985.
Barrow, D. F. "Infinite Exponentials." Amer. Math. Monthly 43, 150-160, 1936.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 61-62, 2004.
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; and Knuth, D. E. "On the Lambert
Function." Adv. Comput. Math.5, 329-359, 1996.
Creutz, M. and Sternheimer, R. M. "On the Convergence of Iterated Exponentiation, Part I." Fib. Quart. 18, 341-347, 1980.
Creutz, M. and Sternheimer, R. M. "On the Convergence of Iterated Exponentiation, Part II." Fib. Quart. 19, 326-335, 1981.
de Villiers, J. M. and Robinson, P. N. "The Interval of Convergence and Limiting Functions of a Hyperpower Sequence." Amer. Math. Monthly 93, 13-23, 1986.
Eisenstein, G. "Entwicklung von
." J. reine angew. Math. 28, 49-52, 1844.
Elstrodt, J. "Iterierte Potenzen." Math. Semesterber. 41, 167-178, 1994.
Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." Acta Acad. Scient. Petropol. 2, 29-51, 1783. Reprinted in Euler, L. Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. pp. 350-369.
Finch, S. R. "Iterated Exponential Constants." §6.11 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 448-452, 2003.
Galidakis, I. N. "On An Application of Lambert's
Function to Infinite Exponentials." Complex Variables Th. Appl. 49, 759-780, 2004.
Ginsburg, J. "Iterated Exponentials." Scripta Math. 11, 340-353, 1945.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Khovanskii, A. N. The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory.Groningen, Netherlands: P. Noordhoff, 1963.
Knoebel, R. A. "Exponentials Reiterated." Amer. Math. Monthly 88, 235-252, 1981.
Knuth, D. E. "Mathematics and Computer Science: Coping with Finiteness. Advances in our Ability to Compute are Bringing us Substantially Closer to Ultimate Limitations." Science 194, 1235-1242, 1976.
Länger, H. "An Elementary Proof of the Convergence of Iterated Exponentials." Elem. Math. 51, 75-77, 1996.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 22 and 39, 1983.
Macdonnell, J. "Some Critical Points on the Hyperpower Function
." Int. J. Math. Educ. Sci. Technol. 20, 297-305, 1989.
Macintyre, A. J. "Convergence of
." Proc. Amer. Math. Soc. 17, 67, 1966.
Mauerer, H. "Über die Funktion
für ganzzahliges Argument (Abundanzen)." Mitt. Math. Gesell. Hamburg 4, 33-50, 1901.
Meyerson, M. D. "The
Spindle." Math. Mag. 69, 198-206, 1996.
Rippon, P. J. "Infinite Exponentials." Math. Gaz. 67, 189-196, 1983.
Rucker, R. Infinity and the Mind: The Science and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1995.
Sloane, N. J. A. Sequences A072364, A073226, A073229, A073230, A077589, A077590, A083648, and A073009 in "The On-Line Encyclopedia of Integer Sequences."
Spiegel, M. R. Mathematical Handbook of Formulas and Tables. New York: McGraw-Hill, 1968.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 11-12 and 226-229, 1991.
Weber, R. O. and Roumeliotis, J. "
^
^
^
^...." Austral. Math. Soc. Gaz. 22, 182-184, 1995.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 35, 1986.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة