Read More
Date: 31-7-2019
1907
Date: 16-4-2019
2690
Date: 4-9-2019
1400
|
The power tower of order is defined as
(1) |
where is Knuth up-arrow notation (Knuth 1976), which in turn is defined by
(2) |
together with
(3) |
|||
(4) |
Rucker (1995, p. 74) uses the notation
(5) |
and refers to this operation as "tetration."
A power tower can be implemented in the Wolfram Language as
PowerTower[a_, k_Integer] := Nest[Power[a, #]&, 1, k]
or
PowerTower[a_, k_Integer] := Power @@ Table[a, {k}]
The following table gives values of for , 2, ... for small .
Sloane | ||
1 | A000027 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... |
2 | A000312 | 1, 4, 27, 256, 3125, 46656, ... |
3 | A002488 | 1, 16, 7625597484987, ... |
4 | 1, 65536, ... |
The following table gives for , 2, ... for small .
Sloane | ||
1 | A000012 | 1, 1, 1, 1, 1, 1, ... |
2 | A014221 | 2, 4, 16, 65536, , ... |
3 | A014222 | 3, 27, 7625597484987, ... |
4 | 4, 256, , ... |
Consider and let be defined as
(6) |
(Galidakis 2004). Then for , is entire with series expansion:
(7) |
Similarly, for , is analytic for in the domain of the principal branch of , with series expansion:
(8) |
For , and ,
(9) |
For , and , and
(10) |
The value of the infinite power tower , where is an abbreviation for , can be computed analytically by writing
(11) |
taking the logarithm of both sides and plugging back in to obtain
(12) |
Solving for gives
(13) |
where is the Lambert W-function (Corless et al. 1996). converges iff (; OEIS A073230 and A073229), as shown by Euler (1783) and Eisenstein (1844) (Le Lionnais 1983; Wells 1986, p. 35).
Knoebel (1981) gave the following series for
(14) |
|||
(15) |
(Vardi 1991).
The special value is given by
(16) |
|||
(17) |
|||
(18) |
(OEIS A077589 and A077590; Macintyre 1966).
The related function
(19) |
converges only for , that is, (OEIS A072364). The value it converges to is the inverse of which can be found by taking the logarithm of both sides of (19),
(20) |
rearranging to
(21) |
and then substituting to obtain
(22) |
Solving the resulting equation for then gives the partial solution
(23) |
which is valid for (i.e., ; OEIS A072364 and A073226). Taking then gives , where is the omega constant.
A continued fraction due to Khovanskii (1963) for the single iteration of is given by
(24) |
The function is plotted above along the real line and in the complex plane. It has series expansion
(25) |
(Trott 2004, p. 59). It has a minimum where
(26) |
which has solution . At this point, the function takes on the value .
The indefinite integral
(27) |
cannot be expressed in terms of a finite number of elementary functions, but some interesting definite integrals of are
(28) |
|||
(29) |
|||
(30) |
|||
(31) |
(OEIS A083648 and A073009; Spiegel 1968; Abramowitz and Stegun 1972; Havil 2003, pp. 44-45; Borwein et al. 2004, p. 5). Borwein et al. (2004, pp. 5 and 44) call these two integrals "a sophomore's dream."
The function is plotted above along the real line and in the complex plane, where it shows beautiful structure.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.
Ash, J. M. "The Limit of as Tends to Infinity." Math. Mag. 69, 207-209, 1996.
Baker, I. N. and Rippon, P. J. "Convergence of Infinite Exponentials." Ann. Acad. Sci. Fennicæ Ser. A. I. Math. 8, 179-186, 1983.
Baker, I. N. and Rippon, P. J. "Iteration of Exponential Functions." Ann. Acad. Sci. Fennicæ Ser. A. I. Math. 9, 49-77, 1984.
Baker, I. N. and Rippon, P. J. "A Note on Complex Iteration." Amer. Math. Monthly 92, 501-504, 1985.
Barrow, D. F. "Infinite Exponentials." Amer. Math. Monthly 43, 150-160, 1936.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 61-62, 2004.
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; and Knuth, D. E. "On the Lambert Function." Adv. Comput. Math.5, 329-359, 1996.
Creutz, M. and Sternheimer, R. M. "On the Convergence of Iterated Exponentiation, Part I." Fib. Quart. 18, 341-347, 1980.
Creutz, M. and Sternheimer, R. M. "On the Convergence of Iterated Exponentiation, Part II." Fib. Quart. 19, 326-335, 1981.
de Villiers, J. M. and Robinson, P. N. "The Interval of Convergence and Limiting Functions of a Hyperpower Sequence." Amer. Math. Monthly 93, 13-23, 1986.
Eisenstein, G. "Entwicklung von ." J. reine angew. Math. 28, 49-52, 1844.
Elstrodt, J. "Iterierte Potenzen." Math. Semesterber. 41, 167-178, 1994.
Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." Acta Acad. Scient. Petropol. 2, 29-51, 1783. Reprinted in Euler, L. Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. pp. 350-369.
Finch, S. R. "Iterated Exponential Constants." §6.11 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 448-452, 2003.
Galidakis, I. N. "On An Application of Lambert's Function to Infinite Exponentials." Complex Variables Th. Appl. 49, 759-780, 2004.
Ginsburg, J. "Iterated Exponentials." Scripta Math. 11, 340-353, 1945.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Khovanskii, A. N. The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory.Groningen, Netherlands: P. Noordhoff, 1963.
Knoebel, R. A. "Exponentials Reiterated." Amer. Math. Monthly 88, 235-252, 1981.
Knuth, D. E. "Mathematics and Computer Science: Coping with Finiteness. Advances in our Ability to Compute are Bringing us Substantially Closer to Ultimate Limitations." Science 194, 1235-1242, 1976.
Länger, H. "An Elementary Proof of the Convergence of Iterated Exponentials." Elem. Math. 51, 75-77, 1996.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 22 and 39, 1983.
Macdonnell, J. "Some Critical Points on the Hyperpower Function ." Int. J. Math. Educ. Sci. Technol. 20, 297-305, 1989.
Macintyre, A. J. "Convergence of ." Proc. Amer. Math. Soc. 17, 67, 1966.
Mauerer, H. "Über die Funktion für ganzzahliges Argument (Abundanzen)." Mitt. Math. Gesell. Hamburg 4, 33-50, 1901.
Meyerson, M. D. "The Spindle." Math. Mag. 69, 198-206, 1996.
Rippon, P. J. "Infinite Exponentials." Math. Gaz. 67, 189-196, 1983.
Rucker, R. Infinity and the Mind: The Science and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1995.
Sloane, N. J. A. Sequences A072364, A073226, A073229, A073230, A077589, A077590, A083648, and A073009 in "The On-Line Encyclopedia of Integer Sequences."
Spiegel, M. R. Mathematical Handbook of Formulas and Tables. New York: McGraw-Hill, 1968.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 11-12 and 226-229, 1991.
Weber, R. O. and Roumeliotis, J. "^^^^...." Austral. Math. Soc. Gaz. 22, 182-184, 1995.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 35, 1986.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
قسم الشؤون الفكرية يصدر كتاب الفلسفة الغربية برؤية الشيخ مرتضى مطهري
|
|
|