المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة
علاقات مصر ببلاد النوبة في عهد ثقافة المجموعة B ثقافة المجموعة B في بلاد النوبة علاقة مصر ببلاد النوبة في العصر الطيني(1). المجموعة الثقافية A (رقم 2) وتقابل في التاريخ المصري العصر الأسري المبكر بلاد النوبة (المجموعة A الثقافية رقم 1) خلايا الليثيوم أيون مجموعة البطارية Lithium lon Cells and Battery packs بدء الخلاف في حضارة القطرين موازنة الخلية في بطارية الليثيوم ايون الخطوط العامة في إطالة عمر بطارية الليثيوم أيون Guidelines for prolonging Li-ion battery life تحسينات في تكنولوجيا بطاريات الليثيوم أيون Improvements to Lithium lon Battery Technology المواصفات والتصميم لبطاريات ايون الليثيوم إطالة عمر الخلايا المتعددة في بطارية الليثيوم ايون من خلال موازنة الخلية Prolonging Life in Multiple Cells Through Cell balancing السلامة في بطارية الليثيوم ايون محاذير وتنبيهات الخاصة ببطارية الليثيوم-ايون ما ورد في شأن الرسول الأعظم والنبيّ الأكرم سيّدنا ونبيّنا محمّد (صلى الله عليه وآله) / القسم السادس والعشرون

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

شرط العدالة واعتباره في الْمُسْتَحِقين للزكاة
16-8-2017
العائلة ودور القدوة للطفل
15-1-2016
Social dialects
8-3-2022
Flower Structure and Cross-Pollination
7-11-2016
الاعلام المهني
4-9-2019
طرق الصدوق والشيخ إلى أصحاب الأُصول والمصنّفات.
21-4-2016

Krawtchouk Polynomial  
  
1320   06:13 مساءً   date: 4-8-2019
Author : Koekoek, R. and Swarttouw, R. F.
Book or Source : "Krawtchouk." §1.10 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit...
Page and Part : ...


Read More
Date: 20-8-2018 1902
Date: 23-4-2019 1836
Date: 27-8-2019 1231

Krawtchouk Polynomial

Let alpha(x) be a step function with the jump

 j(x)=(N; x)p^xq^(N-x)

(1)

at x=0, 1, ..., N, where p>0,q>0, and p+q=1. Then the Krawtchouk polynomial is defined by

k_n^((p))(x,N) = sum_(nu=0)^(n)(-1)^(n-nu)(N-x; n-nu)(x; nu)p^(n-nu)q^nu,

(2)

= (-1)^n(N; n)p^n_2F_1(-n,-x;-N;1/p)

(3)

= ((-1)^np^n)/(n!)(Gamma(N-x+1))/(Gamma(N-x-n+1))×_2F_1(-n,-x;N-x-n+1;(p-1)/p).

(4)

for n=0, 1, ..., N. The first few Krawtchouk polynomials are

k_0^((p))(x,N) = 1

(5)

k_1^((p))(x,N) = -Np+x

(6)

k_2^((p))(x,N) = 1/2[N^2p^2+x(2p+x-1)-Np(p+2x)].

(7)

Koekoek and Swarttouw (1998) define the Krawtchouk polynomial without the leading coefficient as

 K_n(x;p,N)=_2F_1(-n,-x;-N;1/p).

(8)

The Krawtchouk polynomials have weighting function

 w=(N!p^xq^(N-x))/(Gamma(1+x)Gamma(N+1-x)),

(9)

where Gamma(x) is the gamma function, recurrence relation

 (n+1)k_(n+1)^((p))(x,N)+pq(N-n+1)k_(n-1)^((p))(x,N) 
 =[x-n-(N-2)]k_n^((p))(x,N),

(10)

and squared norm

 (N!)/(n!(N-n)!)(pq)^n.

(11)

It has the limit

 lim_(N->infty)(2/(Npq))^(n/2)n!k_n^((p))(Np+sqrt(2Npq)s,N)=H_n(s),

(12)

where H_n(x) is a Hermite polynomial.

The Krawtchouk polynomials are a special case of the Meixner polynomials of the first kind.


REFERENCES:

Koekoek, R. and Swarttouw, R. F. "Krawtchouk." §1.10 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 46-47, 1998.

Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 115, 1998.

Nikiforov, A. F.; Uvarov, V. B.; and Suslov, S. S. Classical Orthogonal Polynomials of a Discrete Variable. New York: Springer-Verlag, 1992.

Schrijver, A. "A Comparison of the Delsarte and Lovász Bounds." IEEE Trans. Inform. Th. 25, 425-429, 1979.

Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 35-37, 1975.

Zelenkov, V. "Krawtchouk Polynomials Home Page." http://www.geocities.com/orthpol/.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.