المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

الزكاة
2023-06-19
السياسات المحاسبية لأرصدة الحسابات القانونية المؤجلة وتداخلـها مع المعايير الأخرى وعرضـها في القوائم المالية
2023-12-06
معنى اسفل سافلين
2024-09-04
Diastereomers
6-7-2019
معنى كلمة أمس‌
31-1-2016
الكذب يدمر الحياة الزوجية
5-1-2022

Beurling,s Function  
  
1188   04:01 مساءً   date: 7-8-2019
Author : Beurling, A.
Book or Source : "Sur les intégrales de Fourier absolument convergentes et leur application à fonctionelle." Neuvième congrès des mathématiciens scandinaves....
Page and Part : ...


Read More
Date: 24-3-2019 3189
Date: 13-8-2018 1563
Date: 23-4-2019 1748

Beurling's Function

BeurlingsFunction

The entire function

B(z) = [(sin(piz))/pi]^2[2/z+sum_(n=0)^(infty)1/((z-n)^2)-sum_(n=1)^(infty)1/((z+n)^2)]

(1)

= 1-(2sin^2(piz))/(pi^2z^2)[z^2psi_1(z)-z-1],

(2)

where psi_1(z) is a polygamma function.

It satisfies B(z)=O(e^(2pi(I[z]))) and B(x)>=sgn(x) for all real x. Amazingly, it also has the integral

 int_(-infty)^infty[B(x)-sgn(x)]dx=1.

(3)

Furthermore, among all functions with the first two properties, B(x) minimizes the integral (3) (Beurling 1938, Montgomery 2001).


REFERENCES:

Beurling, A. "Sur les intégrales de Fourier absolument convergentes et leur application à fonctionelle." Neuvième congrès des mathématiciens scandinaves. Helsingfors, 1938.

Montgomery, H. L. "Harmonic Analysis as Found in Analytic Number Theory." In Twentieth Century Harmonic Analysis--A Celebration. Proceedings of the NATO Advanced Study Institute Held in Il Ciocco, July 2-15, 2000 (Ed. J. S. Byrnes). Dordrecht, Netherlands: Kluwer, pp. 271-293, 2001.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.