Read More
Date: 19-9-2018
1481
Date: 12-8-2018
1744
Date: 25-4-2019
2580
|
At rational arguments , the digamma function is given by
(1) |
for (Knuth 1997, p. 94). These give the special values
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
where is the Euler-Mascheroni constant.
REFERENCES:
Allouche, J.-P. "Series and Infinite Products related to Binary Expansions of Integers." 1992. http://algo.inria.fr/seminars/sem92-93/allouche.ps.
Böhmer, E. Differenzengleichungen und bestimmte Integrale. Leipzig, Germany: Teubner, p. 77, 1939.
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "The Function." §1.7 in Higher Transcendental Functions, Vol. 1. New York: Krieger, pp. 15-20, 1981.
Gradshteyn, I. S. and Ryzhik, I. M. Formula 8.3636 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
Jensen, J. L. W. V. "An Elementary Exposition of the Theory of the Gamma Function." Ann. Math. 17, 124-166, 1915.
Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.
Kölbig, K. S. "The Polygamma Function and the Derivatives of the Cotangent Function for Rational Arguments." Report CN/96/5. CERN Computing and Networks Division, 1996.
Lösch, F. and Schoblik, F. Die Fakultät und verwandte Funktionen. Leipzig, Germany: Teubner, p. 12, 1951.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|