المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الشكر قناة موصلة للنعم الإلهية
2025-01-12
أسباب ودوافع الكفران وطرق علاجه
2025-01-12
عواقب كفران النعمة
2025-01-12
معنى كفران النعمة
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 2
2025-01-12
دور الإدارة الحكوميـة فـي التنـميـة التكـنولوجـيـة 1
2025-01-12

POLYISOPRENE
29-9-2017
Pearson System
12-4-2021
شرح (وَبِعِزَّتِكَ التي لا يقَومُ لَها شَيءٌ).
2023-07-13
The larynx, voicing and voice quality
14-6-2022
العوامل الطبيعية المؤثرة في الإنتاج الزراعي - العوامل المناخية
16-7-2022
محاولة اغتيال الإمام الباقر ( عليه السّلام )
13/11/2022

Perfect Power  
  
1455   05:20 مساءً   date: 16-8-2019
Author : Graham, R. L.; Knuth, D. E.; and Patashnik, O.
Book or Source : "Binomial Coefficients." Ch. 5 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley
Page and Part : ...


Read More
Date: 28-8-2019 1793
Date: 22-4-2019 1962
Date: 20-8-2018 1836

Perfect Power

 

A perfect power is a number n of the form m^k, where m>1 is a positive integer and k>=2. If the prime factorization of n is n=p_1^(a_1)p_2^(a_2)...p_k^(a_k), then n is a perfect power iff GCD(a_1,a_2,...,a_k)>1.

Including duplications (i.e., taking all numbers up to some cutoff and taking all their powers) and taking m>1, the first few are 4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, 64, ... (OEIS A072103). Here, 16 is duplicated since

 16=2^4=4^2.

(1)

As shown by Goldbach, the sum of reciprocals of perfect powers (excluding 1) with duplications converges,

 sum_(m=2)^inftysum_(k=2)^infty1/(m^k)=1.

(2)

The first few numbers that are perfect powers in more than one way are 16, 64, 81, 256, 512, 625, 729, 1024, 1296, 2401, 4096, ... (OEIS A117453).

The first few perfect powers without duplications are 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, ... (OEIS A001597). Even more amazingly, the sum of the reciprocals of these numbers (excluding 1) is given by

 sum_(k=2)^inftymu(k)[1-zeta(k)] approx 0.874464368...

(3)

(OEIS A072102), where mu(k) is the Möbius function and zeta(k) is the Riemann zeta function.

The numbers of perfect powers without duplications less than 10, 10^210^3, ... are 4, 13, 41, 125, 367, ... (OEIS A070428).


REFERENCES:

Finch, S. R. "Niven's Constant." §2.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 112-115, 2003.

Gould, H. W. "Problem H-170." Fib. Quart. 8, 268, 1970.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Binomial Coefficients." Ch. 5 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, p. 66, 1994.

Sloane, N. J. A. Sequences A001597/M3326, A070428, A072102, A072103, and A117453 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.