Read More
Date: 23-9-2019
1213
Date: 25-5-2019
1958
Date: 19-9-2019
1767
|
Let denote the number of partitions into parts not congruent to 0, , or (mod ). Let denote the number of partitions of wherein
1. 1 appears as a part at most times.
2. The total number of appearances of and (i.e., any two consecutive integers) together is at most .
Then Gordon's partition theorem states that for ,
The first Rogers-Ramanujan identity corresponds to , and the second to , .
REFERENCES:
Andrews, G. E. and Santos, J. P. O. "Rogers-Ramanujan Type Identities for Partitions with Attached Odd Parts." Ramanujan J. 1, 91-99, 1997.
Gordon, B. "A Combinatorial Generalization of the Rogers-Ramanujan Identities." Amer. J. Math. 83, 393-399, 1961.
|
|
بـ3 خطوات بسيطة.. كيف تحقق الجسم المثالي؟
|
|
|
|
|
دماغك يكشف أسرارك..علماء يتنبأون بمفاجآتك قبل أن تشعر بها!
|
|
|
|
|
العتبة العباسية المقدسة تواصل إقامة مجالس العزاء بذكرى شهادة الإمام الكاظم (عليه السلام)
|
|
|