المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة
علاقات مصر ببلاد النوبة في عهد ثقافة المجموعة B ثقافة المجموعة B في بلاد النوبة علاقة مصر ببلاد النوبة في العصر الطيني(1). المجموعة الثقافية A (رقم 2) وتقابل في التاريخ المصري العصر الأسري المبكر بلاد النوبة (المجموعة A الثقافية رقم 1) خلايا الليثيوم أيون مجموعة البطارية Lithium lon Cells and Battery packs بدء الخلاف في حضارة القطرين موازنة الخلية في بطارية الليثيوم ايون الخطوط العامة في إطالة عمر بطارية الليثيوم أيون Guidelines for prolonging Li-ion battery life تحسينات في تكنولوجيا بطاريات الليثيوم أيون Improvements to Lithium lon Battery Technology المواصفات والتصميم لبطاريات ايون الليثيوم إطالة عمر الخلايا المتعددة في بطارية الليثيوم ايون من خلال موازنة الخلية Prolonging Life in Multiple Cells Through Cell balancing السلامة في بطارية الليثيوم ايون محاذير وتنبيهات الخاصة ببطارية الليثيوم-ايون ما ورد في شأن الرسول الأعظم والنبيّ الأكرم سيّدنا ونبيّنا محمّد (صلى الله عليه وآله) / القسم السادس والعشرون

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Jacobi Identities  
  
1232   04:09 مساءً   date: 25-8-2019
Author : Borwein, J. M. and Borwein, P. B
Book or Source : Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Page and Part : ...


Read More
Date: 9-8-2019 1512
Date: 17-9-2018 1867
Date: 1510

Jacobi Identities

"The" Jacobi identity is a relationship

 [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0,,

(1)

between three elements AB, and C, where [A,B] is the commutator. The elements of a Lie algebra satisfy this identity.

Relationships between the Q-functions Q_i are also known as Jacobi identities:

 Q_1Q_2Q_3=1,

(2)

equivalent to the Jacobi triple product (Borwein and Borwein 1987, p. 65) and

 Q_2^8=16qQ_1^8+Q_3^8,

(3)

where

(4)

K=K(k) is the complete elliptic integral of the first kind, and . Using Weber functions

f_1 = q^(-1/24)Q_3

(5)

f_2 = 2^(1/2)q^(1/12)Q_1

(6)

f = q^(-1/24)Q_2,

(7)

(5) and (6) become

 f_1f_2f=sqrt(2)

(8)

 f^8=f_1^8+f_2^8

(9)

(Borwein and Borwein 1987, p. 69).


REFERENCES:

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Schafer, R. D. An Introduction to Nonassociative Algebras. New York: Dover, p. 3, 1996.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.