Read More
Date: 15-10-2019
![]()
Date: 25-5-2019
![]()
Date: 16-8-2018
![]() |
There are several q-analogs of the cosine function.
The two natural definitions of the -cosine defined by Koekoek and Swarttouw (1998) are given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where and
are q-exponential functions. The
-cosine and
-sine functions satisfy the relations
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
Another definition of the -cosine considered by Gosper (2001) is given by
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
where is a Jacobi theta function and
is defined via
![]() |
(10) |
This is an even function of unit amplitude, period , and double and triple angle formulas and addition formulas which are analogous to ordinary sine and cosine. For example,
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
where is the q-sine, and
is q-pi (Gosper 2001). The
-cosine also satisfies
![]() |
(13) |
REFERENCES:
Gosper, R. W. "Experiments and Discoveries in q-Trigonometry." In Symbolic Computation, Number Theory,Special Functions, Physics and Combinatorics. Proceedings of the Conference Held at the University of Florida, Gainesville, FL, November 11-13, 1999 (Ed. F. G. Garvan and M. E. H. Ismail). Dordrecht, Netherlands: Kluwer, pp. 79-105, 2001.
Koekoek, R. and Swarttouw, R. F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 18-19, 1998.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
دراسة تستعرض آلام السجناء السياسيين في حقبة البعث المجرم في العراق
|
|
|