Read More
Date: 13-6-2019
2772
Date: 22-5-2019
1705
Date: 10-10-2019
2354
|
The modern definition of the -hypergeometric function is
(1) |
where is a binomial coefficient and is a q-Pochhammer symbol (Gasper and Rahman 1990; Bhatnagar 1995, p. 21; Koepf 1998, p. 25). This is the version of the -hypergeometric function implemented in the Wolfram Language as QHypergeometricPFQ[a1, ..., ar, b1, ..., bs, q, z].
An older form of definition omits the factor ,
(2) |
This is the -hypergeometric function as defined by Bailey (1935), Slater (1966), Andrews (1986), and Hardy (1999).
Note that the two definitions coincide when , including the common case .
A particular case of is given by
(3) |
(Andrews 1986, p. 10). A -analog of Gauss's theorem (the q-Gauss identity) due to Jacobi and Heine is given by
(4) |
for (Koepf 1998, p. 40). Heine proved the transformation formula
(5) |
(Andrews 1986, pp. 10-11). Rogers (1893) obtained the formulas
(6) |
(7) |
(Andrews 1986, pp. 10-11).
The function has the simple confluent identity
(8) |
In the limit ,
(9) |
where is a generalized hypergeometric function (Koepf 1998, p. 25).
REFERENCES:
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., p. 10, 1986.
Bailey, W. N. "Basic Hypergeometric Series." Ch. 8 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 65-72, 1935.
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 21, 1995.
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.
Gasper, G. "Elementary Derivations of Summation and Transformation Formulas for q-Series." In Fields Inst. Comm. 14 (Ed. M. E. H. Ismail et al. ), pp. 55-70, 1997.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 107-111, 1999.
Heine, E. "Über die Reihe ." J. reine angew. Math. 32, 210-212, 1846.
Heine, E. "Untersuchungen über die Reihe ." J. reine angew. Math. 34, 285-328, 1847.
Heine, E. Theorie der Kugelfunctionen und der verwandten Functionen, Bd. 1. Berlin: Reimer, pp. 97-125, 1878.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 25-26, 1998.
Krattenthaler, C. "HYP and HYPQ." J. Symb. Comput. 20, 737-744, 1995.
Rogers, L. J. "On a Three-Fold Symmetry in the Elements of Heine's Series." Proc. London Math. Soc. 24, 171-179, 1893.
Slater, L. J. Generalized Hypergeometric Functions. Cambridge, England: Cambridge University Press, 1966.
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
العتبة العباسية تستعدّ لتكريم عددٍ من الطالبات المرتديات للعباءة الزينبية في جامعات كركوك
|
|
|