Read More
Date: 19-5-2018
1686
Date: 26-7-2019
1650
Date: 11-6-2019
1689
|
Ramanujan's two-variable theta function is defined by
(1) |
for (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies
(2) |
and
(3) |
|||
(4) |
(Berndt 1985, pp. 34-35; Berndt et al. 2000), where is a q-Pochhammer symbol, i.e., a q-series.
A one-argument form of is also defined by
(5) |
|||
(6) |
|||
(7) |
(OEIS A010815; Berndt 1985, pp. 36-37; Berndt et al. 2000), where is a q-Pochhammer symbol. The identities above are equivalent to the pentagonal number theorem.
The function also satisfies
(8) |
|||
(9) |
Ramanujan's -function is defined by
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
(OEIS A000122), where is a Jacobi theta function (Berndt 1985, pp. 36-37). is a generalization of , with the two being connected by
(15) |
Special values of include
(16) |
|||
(17) |
where is a gamma function.
Ramanujan's -function is defined by
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
(OEIS A010054; Berndt 1985, p. 37).
Ramanujan's -function is defined by
(24) |
|||
(25) |
|||
(26) |
(OEIS A000700; Berndt 1985, p. 37).
A different function is sometimes defined as
(27) |
where is again a Jacobi theta function, which has special value
(28) |
REFERENCES:
Berndt, B. C. Ramanujan's Notebooks, Part III. New York: Springer-Verlag, 1985.
Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.
Mc Laughlin, J.; Sills, A. V.; and Zimmer, P. "Dynamic Survey DS15: Rogers-Ramanujan-Slater Type Identities." Electronic J. Combinatorics, DS15, 1-59, May 31, 2008. http://www.combinatorics.org/Surveys/ds15.pdf.
Sloane, N. J. A. Sequences A000122, A000700/M0217, A010054, and A010815 in "The On-Line Encyclopedia of Integer Sequences."
|
|
دراسة تحدد أفضل 4 وجبات صحية.. وأخطرها
|
|
|
|
|
جامعة الكفيل تحتفي بذكرى ولادة الإمام محمد الجواد (عليه السلام)
|
|
|